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Graphical abstract

The graphical abstract summarizes the eco-friendly synthesis of Se-NPs by mainly 
using plant extracts followed by characterization thoroughly highlighting their biological 
activity. The green route followed to synthesize the nanoparticles is depicted in the 
synthesis chart, and characterizations have been done using UV-Vis spectroscopy, 
FTIR, Zetasizer, SEM, and TEM for further evidence of particle formation, stability, 
morphology, and size distribution as well. The recently synthesized nanoparticles’ bio-
logical activities, derived from a range of plant sources, are summarized, highlighting 
their pharmacological potential and diverse therapeutic applications as reported in this 
review paper.
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Introduction

Richard Feynman’s statement that “There’s 
plenty of room at the bottom” has opened 
new doors for the scientific community, 
leading to research interest in nanotech-
nology, which pertains to the proper-
ties of matter at the atomic scale [1]. 
“Nanotechnology,” a term originated by 
Norio Taniguchi, refers to the production 
of materials with one or more dimensions 
at the nanoscale. The goal of nanotechnol-
ogy is to improve manufacturing processes 
while producing superior-quality products. 
Nanoparticles (NPs), nanocomposites, 
and nanowires are the structural and func-
tional components of nanotechnology [2], 
the use of small materials and systems. 
Nanotechnology is expected to play a crit-
ical role in solving a variety of challenges, 

including advancements in healthcare, envi-
ronmental sustainability, and improving 
industrial efficiency and has the potential to 
influence countries’ global economic stand-
ing [3]. Nanotechnology involves working 
with matter at the atomic and molecular 
scale, which is extremely small—usually 
between 1 and 100 nm [4]. Materials at 
the nanoscale have unique properties that 
make them suitable for commercial appli-
cations that benefit humanity, such as bio-
logical probes, diagnosis, catalysis, display 
devices, and optoelectronics [5].

In the field of nanotechnology, mat-
ter can be modified at the molecular and 
atomic scales, to produce materials with 
unique characteristics that can be applied 
to a range of challenges [6, 7]. Nanoscale 
materials have properties different from 
those of their larger counterparts, and can be 
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Abstract

Selenium nanoparticles (Se-NPs) have attracted researchers’ attention because of their unique attributes 
and potential for application in diverse areas, such as biological medicine, environmental remediation, and 
energy generation. This review summarizes recent progress in the green synthesis and characterization of 
Se-NPs. It elaborates on the fabrication of Se-NPs through chemical, biological, and physical techniques, 
including advantages and challenges. Moreover, techniques for evaluating the chemical and physical charac-
teristics of NPs are described. The promising applications of Se-NPs are emphasized, including antioxidant, 
anticancer, and antimicrobial applications, and treatment of neurodegenerative diseases. Because of their 
exceptional properties and biocompatibility, Se-NPs are used in diverse industries. Recently, plant-extract 
synthesized Se-NPs have become increasingly used because of their benefits over chemically synthesized 
Se-NPs, including lower cost and greater environmental friendliness.
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Significance Statement

Recently synthesized Se-NPs from plant extracts are described, and their mechanisms, applications, 
advantages, toxicity, and other aspects are summarized. These Se-NPs are notable for their environmental 
sustainability, cost-effectiveness, and enhanced biocompatibility. Eco-friendly synthesis approaches elimi-
nate hazardous chemicals, decrease production costs, and yield biocompatible nanoparticles with superior 
antioxidant and antimicrobial properties. Compared to chemically synthesized nanoparticles, the produced 
Se-NPs with the help of green synthesis are safer due to their reduced toxicity and are more suitable for a 
range of biomedical and environmental applications. This review advances green nanotechnology by high-
lighting innovative synthesis methods and various applications, and promoting sustainable research practices.
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commercialized [8, 9]. Synthesis of nano-materials, particu-
larly metallic NPs, can be achieved through various methods, 
such as laser pyrolysis, supercritical fluid synthesis, spinning, 
the sol-gel method, mechanical milling, chemical vapor dep-
osition, molecular condensation, chemical reduction, green 
synthesis, etching, sputtering, laser ablation, and electro-ex-
plosion [10]. The most economical and sustainable method 
among those discussed is the green synthesis of metallic NPs 
[11]. This method, compared with chemical methods, poses 
less risk of biological threats that might result in environmen-
tal toxicity. This method applies biological agents, such as 
plant parts and other microorganisms including bacteria and 
fungi, as reducing and stabilizing agents [12, 13].

Using living cells to produce NPs via biological pathways 
is a highly efficient and effective technique with greater mass 
yield than similar methods. Biochemicals and other compo-
nents that can serve as stabilizing and reducing agents for the 
synthesis of green NPs are abundant in plants. This method 
is economical, safe, environmentally beneficial, and also 
more stable than other physical, chemical, and biological 
methods. The green synthesis of NPs can be categorized into 
three types: extracellular, intracellular, and phytochemical. 
The extraction of NPs from plant extracts is an economical 
process that achieves high yields, because of the abundance 
of phytochemical components that act as reducing and sta-
bilizing agents in converting metal ions into metal NPs [14].

Selenium (Se) is an essential trace element in various 
physiological processes, such as metabolism and immune 
function [15]. Selenium NPs (Se-NPs) have unique phys-
icochemical properties and biocompatibility, and conse-
quently are useful in biomedicine, catalysis, and biotech-
nology and pharmaceutical sectors [16]. Recently, Se-NPs 
produced from plant extracts have become frequently used 
because of their advantages over chemically synthesized 
Se-NPs, including lower toxicity and higher sustainability 
[17]. Using plant extracts as reducing agents for Se-NPs is 
more cost-effective and environmentally friendly than con-
ventional synthesis methods [18]. Active phytoconstituents 
in plant extracts act as capping agents and accelerate the con-
version of selenite to fundamental selenium, thus yielding 
Se-NPs with diverse applications [19].

Selenium’s valuable properties render it useful in var-
ious scientific fields including medicine, biology, physics, 
and chemistry. Se-NPs are of special interest because they 
interact with a variety of proteins and have strong biologi-
cal activity. Functional groups such as C–O, C–N, NH, and 
COO– found in proteins are responsible for this interaction. 
Additionally, Se-NPs demonstrate high adsorption capacity 
[20]. Many studies have successfully produced Se-NPs from 
extracts of plants, such as Terminalia arjuna [21], Vitis vinif-
era (raisin), Capsicum annum [22], and fenugreek seeds [23]. 
This discovery has offered a new path for the environmen-
tally friendly synthesis of Se-NPs by using plant extracts; 
this path may be valuable in many industries. Consequently, 
the use of plant extracts as reducing and stabilizing agents 
in Se-NP production is currently a major topic of scientific 
research [24].

The use of plant extracts in synthesizing Se-NPs advan-
tageously enables precise control over the size and shape of 
the particles. Additionally, this process is straightforward 

and can be replicated consistently, and therefore is suita-
ble for large-scale industrial production [25]. The biogenic 
synthesis of Se-NPs by using plant extracts is a promising 
alternative to traditional methods that provides a sustainable 
and environmentally friendly option, while still preserving 
traditional knowledge, and has the potential to revolution-
ize multiple fields [26]. Because of their cost-effectiveness, 
sustainability, and eco-friendliness, plant extracts are increas-
ingly used for the green synthesis of Se-NPs. This technique 
enables specific control over particle dimensions and there-
fore is highly suitable for diverse applications in biotechnol-
ogy and medicine, such as biosensors, cancer therapy, anti-
microbial agents, and targeted drug delivery [27–29].

Synthesis methods of Se-NPs

Top-down approach

Selenium nanoparticles (Se-NPs) can be synthesized through 
biological methods utilizing the reducing and stabilizing 
properties of entities like plant extracts, microorganisms, and 
enzymes. Synthesis can be achieved through either top-down 
or bottom-up approaches, as shown in Figure 1. The first step 
in the top-down approach involves converting larger struc-
tures into nano-sized materials [30]. The top-down approach 
for the synthesis of nanoparticles (NPs) involves breaking 
down larger bulk materials into nanoscale particles. This 
method contrasts with the bottom-up approach, which builds 
NPs from atomic or molecular precursors. The top-down 
method has several drawbacks like the particles might not be 
uniform in size and shape, because of mechanical stress, vig-
orous shaking, and deformation during production. Although 
NPs can be produced on a larger scale, the top-down approach 
is not optimal in all cases [31]. When creating NPs, choosing 
the proper method is essential. The bottom-up approach tends 
to produce NPs with more distinct physical and chemical 
properties than the top-down approach. Therefore, the spe-
cific needs and objectives for NP synthesis must be carefully 
considered before selection of the most suitable method, to 
ensure that the desired results are achieved [32].

Bottom-up approach

To synthesize NPs from molecules, certain materials are 
combined with agents that promote stability. Subsequently, 
the materials are subjected to specific conditions, such as 
heating, mixing, or chemical reactions [33]. NPs can be pro-
duced through a process called self-assembly, which enables 
control of the dimensions of the particles and addition of any 
necessary coatings or stabilizers. The production of metallic 
NPs starts with metal salts, which are broken into tiny atom-
ic-sized particles. These particles then adhere and form NPs. 
This method is useful for producing NPs of the same size 
and shape, for applications such as drug delivery or catalysis. 
Self-assembly aids in control of the process and the produc-
tion of uniform particles [34].

The bottom-up approach offers enhanced control over NP 
composition and surface characteristics. This technique also 
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enables addition of specific coatings or functional groups 
to the NP surface, thus improving the particles’ stability 
and ability to interact with other materials. The bottom-up 
method is flexible and adaptable, thereby allowing for the 
production of NPs with various functionalities through the 
optimization of synthesis parameters, such as pH, tempera-
ture, and concentration, or use of different precursor mate-
rials [35]. In contrast, the top-down approach reduces larger 
structures, such as bulk materials or thin films, to nanoscale 
dimensions to form NPs. In creating NPs from molecules, 
specific stabilizing agents are combined with precursor 
materials and subjected to certain conditions, such as heat-
ing, mixing, or chemical reactions [36]. NP size and shape 
can be precisely controlled through a process called self-as-
sembly, which includes adding necessary coating and stabi-
lizing agents. Metallic NPs can be synthesized through a bot-
tom-up synthesis method, in which metal salts are reduced 
to produce atomic-sized materials. These materials then 
undergo self-assembly through nucleation and growth, thus 
producing NPs with the desired dimensions. This method 
has many benefits, including the ability to create highly uni-
form NPs, thus aiding in applications that require particle 
uniformity, such as drug delivery systems or catalysis [37].

NPs can be made through either a bottom-up or top-down 
approach. The external appearance and composition of the 
particles can be more precisely controlled through the bot-
tom-up method, which allows for specific coatings or func-
tional groups to be added. Consequently, the particles are 
less prone to degradation and are better able to interact with 
other materials. The bottom-up approach can produce NPs 
with various functionalities through adjustment of synthesis 
parameters or use of different precursor materials. In con-
trast, the top-down approach reduces larger structures to 
nanoscale dimensions to synthesize NPs [38].

Biogenic synthesis of Se-NPs

Se-NPs can be produced by biological systems including 
fungi, bacteria, enzymes, and plant parts. Biogenic synthesis 
methods are increasingly used because of their eco-friendly 

and sustainable qualities. Unlike chemical approaches, 
which produce hazardous waste, biogenic synthesis converts 
soluble selenium ions, such as selenate or selenite, into NPs. 
This process uses biological agents such as plant extracts or 
microbial cells. Temperature, pH, concentration, and biolog-
ical agent type all affect the process [39]. Biogenic synthesis 
is a cost-effective, environmentally friendly, highly stable, 
and biocompatible method for producing Se-NPs [40].

Plant-mediated Se-NPs synthesis

Se-NPs can be synthesized biologically using plant extracts, 
which facilitate the reduction of soluble selenium ions into 
nanoparticles. This green synthesis technique, known for its 
ease of use, low cost, and environmental friendliness, has 
captured substantial research attention [41]. Important plant 
parts, including leaves, seeds, flowers, stems, and roots, 
either dried or fresh, can be used in the synthesis process. 
Bioactive compounds that are phytochemicals, such as flavo-
noids, anthocyanins, or carotenoids, are extracted by boiling 
or sonication in water or organic solvents. To promote the 
reduction of selenium ions into NPs, selenium salts (precur-
sors), such as selenite or selenate, are mixed with the plant 
extracts under optimal conditions, such as controlled pH 
and temperature [42]. Flavonoids and terpenoids are used 
in the synthesis to stabilize the metallic Se-NPs created by 
reducing selenium ions. The plant type, selenium ion con-
centration, and reaction time are several variables affecting 
the dimensions of Se-NPs [43]. The evaluation of metallic 
Se-NPs can be performed with methods including ultravio-
let-visible (UV-vis) spectroscopy, scanning electron micros-
copy (SEM), transmission electron microscopy (TEM), 
X-ray diffraction (XRD), and Fourier transform infrared 
spectroscopy (FTIR) [44]. The synthesis of Se-NPs with 
plants offers several advantages, such as excellent biocom-
patibility; non-toxicity; and potential applications in health-
care, agriculture, and environmental remediation [45].

The method for synthesis of Se-NPs with selenious acid 
and plant extracts is as follows. The plant extract is prepared 
by mixing the plant material with water and allowing it to 

Figure 1  Illustration of the top-down and bottom-up approaches for the synthesis of nanoparticles.
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stand for a period of time. The extract is then filtered to 
remove any solid particles. The plant extract is mixed with 
selenious acid, which acts as a selenium-containing precur-
sor. The mixture is stirred at room temperature for a spe-
cific time interval, typically 12–72 hours. The plant extract 
contains biomolecules that act as reducing agents and sta-
bilizers for the Se-NPs. The reduction of selenious acid to 
Se-NPs occurs under the influence of these biomolecules. 
The Se-NPs are separated from the reaction mixture by cen-
trifugation at high speed, and are subsequently washed thor-
oughly with water and solvent to remove any residual plant 
extract or other impurities [51, 52].

Bacteria-mediated Se-NP synthesis

Bacteria can be used to synthesize Se-NPs by converting sol-
uble selenium ions into NPs with bacterial cells or cell-free 
extracts. This technique has attracted interest because of its 
simplicity, high yield, and potential for massive production. 
To increase the reduction of selenium ions into NPs, the syn-
thesis process involves incubating bacterial cells or cell-free 
extracts with selenium salts, such as selenite or selenate, 
under controlled pH and temperature conditions. The result-
ing Se-NPs can be analyzed with various analytical methods, 
including UV-vis spectroscopy, TEM, and XRD. Bacillus 
subtilis, Escherichia coli, Staphylococcus aureus, and 
Pseudomonas aeruginosa are among the bacterial species 
demonstrated to be able to produce Se-NPs. The synthesis 
process involves bacterial cells secreting reducing agents, 
such as proteins, enzymes, or metabolites, which aid in the 
transformation of selenium ions into NPs. The dimensions of 
Se-NPs are influenced by variables such as the type of bac-
teria, concentration of selenium ions, and reaction time. The 
biological synthesis of Se-NPs with bacteria offers numer-
ous advantages, including high stability, potential therapeu-
tic and environmental applications, eco-friendliness, and 
possibilities for future use [79].

Fungi- mediated Se-NP synthesis

During the fabrication of Se-NPs with fungi, fungal cells or 
fungal extracts are used to transform soluble selenium ions 
into NPs. This technique is considered eco-friendly and 

sustainable, because of its affordability and high yield. For 
synthesis of Se-NPs, fungal extracts or cells are incubated 
with selenium salts under suitable pH, temperature, and 
incubation time conditions. The enzymes, polysaccharides, 
and proteins in the fungal extracts or cells act as reducing 
agents in the conversion of selenium ions to NPs. The gen-
erated Se-NPs can be analyzed with analytical methods 
such as UV-vis spectroscopy, XRD, and TEM. Fungi such 
as Candida glabrata, Aspergillus niger, and Penicillium spe-
cies have been used to produce Se-NPs. The dimensions of 
Se-NPs are influenced by many factors, such as the type of 
fungus, selenium ion concentration, and reaction conditions. 
The advantages of producing Se-NPs biologically with fungi 
include high stability; low toxicity; and potential biomedi-
cine, biotechnology, and environmental remediation applica-
tions. Se-NPs generated from fungi have been demonstrated 
to possess anticancer, antifungal, antibacterial, and antiox-
idant properties, and can be used as drug delivery systems 
[79, 80].

Characterization of Se-NPs

Ultraviolet-visible spectroscopy

UV-vis spectroscopy is a tool used to estimate the optical 
properties of NPs. Figure 2 shows the UV-Vis absorption 
spectra of the synthesized nanoparticles, illustrating the 
surface plasmon resonance. This method provides valua-
ble information regarding particle size, shape, and compo-
sition. NPs have quantized energy levels because of their 
small size [81]. The size of Se-NPs affects their electronic 
structure, and consequently how they absorb and scatter 
light. These effects are particularly noticeable in the UV-vis 
region. This method helps researchers examine how NPs 
interact with light, thus providing essential information 
for understanding NP size and quantum properties [82]. 
UV-vis spectroscopy studies have shown that Se-NPs have 
unique electrical structures that cause them to absorb light 
in a distinct manner. Surface plasmon resonance informa-
tion is essential for understanding how light interacts with 
NPs. Researchers have confirmed the presence of Se-NPs 
according to peaks in the UV region (200–400 nm) [83], as 
depicted in Table 1.

Figure 2  Characterization of nanoparticles (NPs) by UV-Vis spectroscopy.
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Fourier transform infrared 
spectroscopy
Fourier transform infrared spectroscopy (FT-IR) is a pow-
erful technique for analyzing a material’s functional groups 

and chemical bonds, thereby providing information on 
Se-NP composition and surface properties. Figure 3 pre-
sents the procedure to get FTIR spectra of synthesized nano-
particles. FTIR analysis reveals details regarding the surface 
chemistry and organic capping agents [84]. This method 

Table 1  Plant-Mediated Fabrication of Se-NPs.

Sr. 
No

  Plant Name   Plant Parts 
Used

  UV (nm)   Average 
Size (nm)

  Biological Activity   References

1   Allium sativum   Clove   260   100   Antimicrobial   [46]

2   Azadirachta indica   Leaves   286   168   Anthelmintic, antibacterial   [47]

3   Brassica oleracea   Florets   370   25   Antimicrobial   [48]

4   Carica papaya   Fruit   364   101   Antimicrobial   [49]

5   Cassia angustifolia   Seed   286   00–00   Antibacterial, antifungal   [50]

6   Cassia auriculata   Leaves   252   50   Anti-proliferative   [53]

7   Citrus lemon   Fruit juice   400   90   Antioxidant   [54]

8   Citrus paradise   Peel   550   10   Antibacterial   [20]

9   Citrus reticulata   Peel   265   70   Antimicrobial   [55]

10   Citrus sinensis   Peel   250–300   20   Antibacterial   [56]

11   Clausena dentata   Leaves   420   80   Larvicidal   [57]

12   Cleistocalyx operculate   Leaves   302   200   Antibacterial   [58]

13   Clitoria ternatea   Flower   635   106   Antibacterial   [59]

14   Diospyros montana   Bark   289   150   Antibacterial   [60]

15   Enicostema axillare   Leaves   325   98   Antibacterial   [61]

16   Hibiscus sabdariffa   Leaves   320   50   Antioxidant   [62]

17   Moringa oleifera   Leaves   530   20   Antioxidant   [63]

18   Moringa peregrina   Leaves   279   150   Antibacterial, anticancer   [64]

19   Nigella sativa   Seed oil   530   75   Larvicidal   [65]

20   Ocimum gratissimum   Leaves   300   50   Antimicrobial   [66]

21   Opuntia basilaris   Peel   280   90   Antibacterial   [67]

22   Portulaca oleracea   Leaves   266   30   Antimicrobial   [68]

23   Psidium guajava   Leaves   381   20   Antibacterial   [69]

24   Punica granatum   Peel extract   330   145   Antioxidant   [70]

25   Ribes nigrum   Fruit   265   50   Antioxidant   [71]

26   Solanum lycopersicum   Seed   350   100   Antimicrobial   [72]

27   Terminalia arjuna   Bark   289   150   Anticancer   [73]

28   Theobroma cacao   Seed   276   50   Antioxidant   [74]

29   Tinospora cordifolia   Stem   285   200   Antioxidant, anticancer   [75]

30   Trigonella foenum-graecum   Seed   200–400   50–150   Anticancer   [76]

31   Vitis vinifera   Fruits   280   100   Antioxidant   [77]

32   Withania somnifera   Root   622   22   Antioxidant   [78]

Figure 3  Characterization of nanoparticles (NPs) by fourier transform infrared spectroscopy (FTIR).
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can help confirm the synthesis process and understand NPs’ 
chemical environment. Plants rich in polyphenolic constitu-
ents are generally selected for synthesis. The active involve-
ment of O–H, N–H, C=O, and C–O functional groups in the 
formation of Se-NPs can be validated by FTIR spectroscopy 
[85]. After the green synthesis of Se-NPs, the characteristic 
peaks observed in the FTIR spectrum are at 1375 cm−1 (indi-
cating phenolic OH), 1030 cm−1 (corresponding to aromatic 
in-plane C–H bending), 1462 c−1 (representing asymmetric 
C-H bending in CH

3
 and CH

2
), and 1250 cm−1 (indicating 

secondary O-H) [86]. Between 3200 and 3500 cm−1, bonded 
O–H stretching can be confirmed. Analysis of the FTIR 
spectrum of Se-NPs synthesized from plant extracts, pro-
vides insights into the chemical composition, surface func-
tionalization, and surface modifications of NPs.

Transmission electron microscopy

The fundamental morphology and dimensions of Se-NPs can 
be observed in high-resolution images produced by TEM. 
Figure 4 showcases TEM image of the synthesized nano-
particles, providing detailed insights into their morphology, 
size, and distribution at the nanoscale. This information is 
essential for interpreting NPs’ physical properties. NP size 
can be accurately measured with TEM. This aspect is impor-
tant, because NPs’ size significantly influences their proper-
ties, including their optical, electronic, and catalytic behav-
ior [87, 88]. TEM can reveal details regarding the internal 
structure of Se-NPs and also provides insights into the spa-
tial distribution of Se-NPs within samples. This information 
is valuable for understanding how well NPs are dispersed 
or aggregated, both of which influence NPs’ activities and 
applications [88]. TEM can aid in identifying and visualizing 
any organic capping agents or ligands present on Se-NP sur-
faces. These coatings can potentially be incorporated during 
the synthesis process, and can affect NPs’ stability and inter-
actions with other substances [89]. TEM is used to charac-
terize NPs with dimensions below 10 nm. Energy-dispersive 
X-ray spectroscopy can be coupled with TEM to analyze 
the chemical composition of NPs, thereby confirming the 
presence of selenium and any other elements in the NPs. 
This method also aids in identifying any additional elements 
introduced during synthesis [90].

Scanning electron microscopy

SEM is a valuable technique for visualizing NP morphol-
ogy and providing details on particle size, shape, and sur-
face characteristics. This technique enables high-resolution 
examination of the surface topography and structure of 
NPs. SEM scans NP surfaces with a focused electron 
beam. Different signals are produced as the electrons inter-
act with the sample, including secondary and backscattered 
electrons. These signals are identified and used to generate 
an image of the NP surface. Consequently, researchers can 
examine NPs’ structure, quantify their size and shape, and 
identify any surface defects. Alagesan et al. have revealed 
a distinct propensity of Se-NPs to aggregate—an observa-
tion substantiated by field-emission SEM images. These 
Se-NPs exhibit a spherical morphology, with diameters of 
45–90  nm. During the synthesis of nanoparticles (NPs), 
particle aggregation becomes the dominant process, which 
masks the reduction of precursor atoms and the initial 
nucleation of these atoms [91].

Dynamic light scattering

Dynamic light scattering (DLS) is a prominent approach for 
characterizing NPs in solutions, and providing information 
regarding their size distribution and mobility. Figure 5 
depicts the sample machine setup used for DLS analysis. 
The mechanism of characterizing Se-NPs with DLS is based 
on the principles of Brownian motion and the interaction 
of laser light with NPs in a solution [92]. This approach is 
widely used to characterize Se-NP size and distribution. This 
technique can determine the average size of NPs. The zeta 
potential of NPs can also be measured with DLS. The zeta 
potential measures NP surface charge and stability in a liquid 
medium, and is determined by analysis of the electrophoretic 
mobility of particles in an applied electric field [93]. Sani-e-
Zahra et al. have used DLS analysis to calculate the average 
size of Se-NPs, thus demonstrating polydispersity in Se-NPs 
derived from tomato juice and seed extract sources. Two dis-
tinct model peaks were observed, at 989.5 nm and 151.7 nm, 
accompanied by a polydispersity index value of 0.432. The 
average size of the Se-NPs in the tomato juice extract was 
approximately 1020 nm [71].

Figure 4  Characterization of nanoparticles (NPs) by transmission electron microscopy (TEM).
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X-ray diffraction

XRD, based on Bragg’s law, illustrates X-ray diffraction 
by crystal planes. When X-rays collide with a crystalline 
sample, they interact with the lattice and are dispersed at 
different angles. The scattering angles can be used to cal-
culate the interatomic distances within the crystal lattice. 
XRD can be used to determine the crystalline structure of 
Se-NPs. Exposing the NPs to X-rays provides diffraction 
patterns revealing information about the arrangement of 
atoms in the NPs. Consequently, the crystal structure can 
be identified, although the synthesis method and conditions 
can introduce variations. For example, selenium can exist 
in different crystalline forms, including hexagonal and 
amorphous forms, which can be distinguished by XRD. 
XRD data can be used to estimate the average Se-NP par-
ticle size through analysis of peak broadening in the XRD 
pattern, which is associated with the size of the crystal-
line domains in the NPs. Moreover, XRD can reveal the 
presence of impurities in the synthesized Se-NPs and can 
confirm Se-NPs’ chemical composition and stoichiometry 
[94]. Hashem et. al. have reported the XRD analysis of 
green synthesized Se-NPs and described the crystal and 
amorphous composition for precursor and synthesized 
Se-NPs, respectively [95].

Energy dispersive X-ray 
spectroscopy
Energy dispersive X-ray spectroscopy (EDX) provides use-
ful information regarding NPs’ elemental compositions and 
chemical characteristics, through analysis of the energy dis-
tribution of X-rays emitted by a sample. Figure 6 illustrates 
the process of EDX in nanoparticle characterization. EDX 
provides quantitative data on the elemental composition, 
including the ratio of selenium to other elements present, 
which can aid in assessing NP purity. Examining the spa-
tial distribution of elements within an NP and its elemen-
tal composition is helpful. This approach is based on the 
X-ray fluorescence principle. High-energy X-rays ionize 
and excite atoms in the sample, and characteristic X-ray 
spectra are emitted. Advanced EDX systems, such as X-ray 
photoelectron spectroscopy (XPS or ESCA), provide infor-
mation regarding the chemical states of elements, thereby 

Figure 6  Characterization of NPs by energy dispersive X-ray spec-
troscopy.

Figure 5  Characterization of NPs by dynamic light scattering (DLS).

aiding in identifying chemical bonds and understanding NP 
surface chemistry. EDX spectroscopy can also be coupled 
with scanning electron microscopy to further enhance NP 
characterization [96]. Shahbaz et  al. identified the solid 
absorption peaks of selenium ions at 1.35 keV, 11.20 keV, 
and 12.40 keV during the synthesis of selenium nanopar-
ticles (Se-NPs) from plant extracts, using EDX spectra. 
According to EDX analysis, selenium coexists as peaks 
with other elements in elemental form [97].

Zetasizer analysis

Particle size remains a key determinant of NP biodistribu-
tion, uptake, and clearance from the body. A Zetasizer instru-
ment can be used to measure Se-NP particle size in terms 
of hydrodynamic diameter. The size distribution can also be 
characterized by the polydispersity index, which is expressed 
as mutually exclusive and opposite values: the lower the 
index, the higher the monodispersity. Zeta potential refers to 
NP surface charge and is used to determine the stability of an 
NP dispersion. Particles with a high zeta potential, whether 
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positively or negatively charged, generate repulsive forces 
that prevent aggregation, thereby ensuring long-term stabil-
ity in the solution. Zeta potential also affects the behaviors of 
NPs toward biological entities such as cell membranes and 
proteins. When Se-NPs are characterized with a Zetasizer, 
synthesis methods can be tailored to synthesize Se-NPs of 
known size, with surface charges suitable for a given appli-
cation. This information is valuable for establishing proper 
Se-NP formulations for drug delivery, imaging, and thera-
peutic applications in which size and stability play important 
roles in effectiveness and safety [98].

Factors affecting the synthesis 
of Se-NPs

Sources of reducing and stabilizing 
agents

Plant extracts

The type and the part of the plant used (leaves, stems, or 
roots) affects the synthesis because of the varying concentra-
tions of phytochemicals such as flavonoids, phenolic com-
pounds, and terpenoids [99].

Microorganisms

Various strains of bacteria, fungi, and algae have enzymatic 
pathways that affect the reduction and stabilization of sele-
nium ions [100].

Concentrations of precursor and 
reducing agents
Higher concentrations of selenium salts (e.g., sodium sele-
nite or selenious acid) lead to the formation of larger NPs 
or higher yield, but can also increase the risk of aggregation 
[75, 101].

pH of the reaction medium

The pH of the synthesis medium affects the charge on the 
NPs and the ionization state of the reducing agents, and 
consequently influences the reduction rate, particle size, 
and stability. Neutral to slightly alkaline pH is favorable for 
Se-NP synthesis [102].

Temperature

Higher temperatures accelerate the reduction process, and 
affect the size distribution and crystallinity of Se-NPs [103]. 
Excessively high temperatures may lead to uncontrolled 
growth and aggregation.

Reaction time

The duration of the synthesis process influences the growth 
and stabilization of NPs [103]. Shorter reaction times may 
result in incomplete reduction, whereas longer times can lead 
to larger particles or aggregation. Finding an optimal reaction 
time is important for achieving desired NP characteristics.

Agitation and mixing

Proper mixing ensures uniform distribution of reducing 
agents and selenium precursors in the reaction medium, 
thus promoting homogeneous nucleation and growth of 
NPs [104]. Agitation speed can influence particle size and 
distribution.

Ionic strength and presence of 
additives
The ionic strength of the medium, influenced by the pres-
ence of salts or other additives, can affect the electrostatic 
interactions between particles, thereby influencing their 
stability and aggregation behavior. The choice of solvent 
can influence the solubility of the precursor and reducing 
agents, as well as the reduction kinetics. Aqueous solvents 
are frequently used in green synthesis, because of their eco-
friendliness [24, 105].

Cytotoxicity of Se-NPs

In evaluating the suitability of green synthesized Se-NPs 
for biomedical purposes, investigating their cytotoxicity 
is crucial. The green synthesis method uses natural and 
environmentally friendly sources, such as plant extracts, 
to produce Se-NPs, which are presumed to be less harmful 
than chemically synthesized Se-NPs [106]. Several inves-
tigations have been conducted to determine the cytotox-
icity of Se-NPs produced through green synthesis with 
various cell lines, including normal and cancer cells. The 
cytotoxicity of Se-NPs produced through green synthesis 
varies according to the concentration, size, surface charge, 
and duration of exposure. Although some studies have 
concluded that Se-NPs produced through green synthe-
sis have minimal cytotoxicity at low doses, others have 
reported heightened cytotoxicity at higher concentrations. 
Notably, the cytotoxicity of Se-NPs may also be influ-
enced by the cell type and biological environment in which 
they are used. Assays such as MTT, LDH, and Annexin V/
propidium iodide can be used to evaluate the cytotoxicity 
of Se-NPs produced through green synthesis. These tests 
measure cell viability, membrane integrity, and apoptosis/
necrosis after exposure to Se-NPs. Although green-syn-
thesized Se-NPs are less hazardous than chemically syn-
thesized Se-NPs, their cytotoxicity must be thoroughly 
investigated to ensure their safety and efficacy in various 
biological applications [107].
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Future advances

Se-NPs have substantial potential in diverse applications, as 
illustrated in Figure 7. Se-NPs have a high surface-to-vol-
ume ratio, thus enhancing their activity and making them 
more effective than larger particles. Se-NPs have substan-
tial potential in a range of biological applications, includ-
ing medication delivery, cancer therapy, and antioxidants. 
Studies have demonstrated their anti-cancer, antioxidant, 
antimicrobial, and anti-biofilm properties. The application of 
nano-Se medications has shown promising results in treating 
Huntington’s disease. Se-NPs have notable semiconducting, 
photoelectric, and X-ray-sensing properties; are used in pho-
tocells, photocopying, photometers, and xerography; and are 
also important in renewable energy devices. Se-NPs are val-
uable in environmental applications because of their mercu-
ry-capturing properties.

Se-NPs in anticancer applications

Cancer is a major research focus, because it is the most 
destructive disease in the 21st century. Current challenges 
include problems of drug-induced toxicity and resistance. 
Various treatment methods are being tested to combat cancer. 
With the help of nanotechnology, personalized medicine has 
become more effective, by enabling better targeting while 
decreasing toxicity. Inorganic NPs, such as Se-NPs, have 
been successfully used to induce cytotoxicity in cancer cells. 
Se-NPs have the potential to decrease drug resistance and 
limit chemotherapeutic drug toxicity. Se-NPs derived from 
the probiotic bacterial strain Lactobacillus casei ATCC393 
have been biogenically synthesized and demonstrated to 
suppress colon cancer cell proliferation, both in vitro and 
in vivo. At a treatment dose of 15 g/mL, Caspases 3/7 and 

9 are activated by Se-NPs, thereby limiting the develop-
ment of Caco-2 colon cancer cells. Moreover, Se-NPs have 
been found to activate intrinsic apoptotic pathway-associ-
ated apoptotic processes in CT26 and HT29 colon cancer 
cells [108]. The immunomodulatory effects of Se-NPs as 
an immunoadjuvant have been examined by Yazdi, et al., to 
develop a preventive tumor-associated antigen-based vac-
cine effective against breast tumors in mice [109]. For the 
prevention of cervical cancer, Se-NPs have been synthesized 
through green chemistry methods, and altered with a hydro-
philic biocompatible polymer such as chitosan to incorporate 
anticancer drugs such as paclitaxel. Se-NPs act primarily by 
inducing apoptosis through caspase activation and mitochon-
drial dysfunction, thus generating reactive oxygen species 
(ROS), and leading to oxidative stress and DNA damage, 
inhibited cell proliferation via cell cycle arrest, and down-
regulation of proliferative signaling pathways [110].

Se-NPs in antimicrobial applications

Antimicrobials, including antibiotics, antivirals, antifun-
gals, and antiparasitics, are currently essential in medical 
practice. Despite warnings regarding the adverse effects of 
antibiotic resistance, which was discovered in penicillin-
resistant bacteria, antibiotics continue to be overused. Since 
the discovery of Staphylococcus in 1940, with extensive use 
of antimicrobials in food, medicine, and agriculture, multi-
drug-resistant microorganisms have proliferated and have 
become more difficult to eradicate with potent antibiotics. 
The growth of antimicrobial resistance has necessitated 
development of alternative antimicrobials. Gold, silver, 
copper, titanium dioxide, and zinc oxide NPs are among 
those currently being researched. Many studies have shown 
excellent efficacy of Se-NPs as broad-spectrum antibac-
terial agents against bacteria, viruses, fungi, and parasites. 

Figure 7  Applications of green synthesized Se-NPs.
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According to Sans-Serramitjana et  al., the application of 
Se-NPs against oral pathogenic microorganisms such as C. 
albicans, E. faecalis, P. gingivalis, and S. mutans appears to 
be promising for in vitro reduction of planktonic and sessile 
microbial populations. Se-NPs exhibit antimicrobial activ-
ity by generating ROS that damage microbial cell walls and 
DNA, disrupting cell membranes to cause leakage, interact-
ing with sulfur-containing proteins and consequently inhib-
iting microbial functions, and preventing biofilm formation. 
These mechanisms collectively enhance the effectiveness 
against various bacteria [111].

NPs in antifungal applications

Se-NPs have antifungal properties and have found use in var-
ious biological applications. These NPs primarily interfere 
with essential fungal enzymes and proteins, thus disrupting 
metabolic processes. Lazcano-Ramirez. et al. have conducted 
assays with Se-NPs at serial dilutions from 0 to 1.7 mg/mL, 
and have reported their antifungal activity against the commer-
cially important plant pathogenic fungi Fusarium oxysporum 
and Colletotrichum gloeosporioides. Both Se-NPs showed 
antifungal activity against the plant pathogens at 0.25 mg/
mL doses. Nile et al. have functionalized biogenic Se-NPs 
synthesized with the help of Paenibacillus terreus with nys-
tatin (Se-NP@PVP nystatin nanoconjugates) and used them 
to inhibit Candida albicans growth, morphogenesis, and bio-
film formation. Although Se-NPs produced during biologi-
cal processes are inert, nanoconjugates have demonstrated 
antifungal activity against C. albicans by preventing growth, 
morphogenesis, and biofilm formation [112].

Se-NPs in antidiabetic applications

Diabetes is a common metabolic disorder that affects many 
people and can greatly reduce their quality of life. According 
to the World Health Organization, diabetes is expected to 
affect 366 million people by 2030, and is associated with 
1.5 million annual fatalities worldwide. Several factors con-
tribute to the development of diabetes, including poor eat-
ing habits, stress, inactivity, obesity, inflammation, heredity, 
and age. However, various methods are available to manage 
diabetes and its associated complications, including dietary 
changes; engaging in physical activity; and closely moni-
toring blood pressure, glucose levels, and cholesterol. The 
protein hormone insulin is typically administered through 
subcutaneous injections to regulate blood glucose levels in 
people with diabetes. However, frequent insulin injections 
can cause discomfort, localized infection, fatty deposition, 
hypertrophy, and trypanosomiasis. Se-NPs have been used 
in studies to address diabetes, because of their strong ability 
to regulate blood glucose levels. Se-NPs elicit antidiabetic 
effects by enhancing insulin sensitivity, decreasing oxidative 
stress and inflammation, regulating glucose metabolism, and 
protecting pancreatic beta cells, thereby improving glucose 
control and mitigating diabetes complications. Gutierrez 
et al. have administered Se-NPs derived from luteolin (Lu) 
and diosmin (DIO) to mice with streptozotocin-induced 

diabetes, to treat hyperlipidemia, hyperglycemia, and hepa-
to-renal dysfunction. This treatment resulted in enhanced 
serum biochemical parameters, better glycemic control, and 
decreased lipotoxicity while maintaining β-cell function. 
The findings suggest that synthesized NPs can effectively 
manage diabetic diseases and have high potential for amelio-
rating the disorders associated with diabetes mellitus [113].

Toxicity assessment

Se-NPs have greater effects on organisms than inorganic 
selenium forms. In addition, each individual’s need for anti-
oxidant defense determines how selenium affects health 
status. Selenium becomes toxic when present in excess. 
Selenium toxicity in general and Se-NP toxicity have been 
assumed to be related: both selenium and Se-NPs have 
pro-oxidative properties that increase ROS concentrations. 
The bioaccumulation phenomenon may amplify this effect 
in various tissues, among which the liver is most susceptible 
[114]. However, in the toxicological examination of Se-NPs, 
only the function of the antioxidant system; body weight; 
and bioaccumulation in the liver, kidneys, and heart have 
received substantial attention. The ways in which Se-NPs 
interact with the gastrointestinal tract, immunological sys-
tem, muscles, and other indirect targets of selenium are 
poorly understood [115]. Se-NPs are less harmful than sele-
nium in most tests. Sublethal doses of 20 nm Se-NPs at 0.05, 
0.5, or 4 mg Se/kg body weight (BW)/d were not found to 
lead to differences in brain neurotransmitters or hematolog-
ical markers between control and sodium selenite-treated 
groups (0.5 mg Se/kg BW/d) during a 28-day trial [116]. 
Se-NPs did not show more efficient bioaccumulation in 
blood and tissues after dietary administration of 10 mg Se/
kg BW. Plasma, liver, and kidney GPx activity did not dif-
fer between Se-methionine and Se-NP treatment. Moreover, 
Se-NPs led to less immediate liver injury and less toxicity 
than Se-Met. A decrease in the dietary selenium stockpile and 
an increase in the lethal dosage in Se-NPs fed mice demon-
strated the efficacy of Se-NPs in avoiding selenium toxic-
ity. The hypothesized mechanism involves the cell’s unique 
selenium uptake and phase 2 response. Despite the varying 
toxicological effects of Se-NPs, biologically or ecologically 
fabricated and altered NPs have been reported to enhance 
animal health, with diminished toxicity [117]. Specific doses 
of Se are believed to be harmful. Therefore, the toxicity of Se 
nanomaterials is believed to depend on both the size/shape 
and dosage of Se-NPs. Many studies have shown that bio-
genic Se-NPs are less harmful than sodium selenite in ani-
mals. Bano et al. have researched the toxicological effects of 
Se-NPs in animals and concluded that low concentrations of 
Se-NPs can be considered safe [118].

Conclusion

Se-NPs can be fabricated through physical, chemical, and 
biological methods. The green synthesis approach is gaining 
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attention for its economical and eco-friendly advantages. 
Using natural sources such as extracts of plants and micro-
organisms as reducing and stabilizing agents in Se-NP 
synthesis is a promising technique. The green synthesis 
of Se-NPs has substantial potential in various fields, such 
as medicine, agriculture, and environmental remediation. 
Moreover, Se-NPs have potential in cancer therapy, wound 
healing, and drug delivery systems in medicine. In agricul-
ture, Se-NPs have been found to improve plant growth and 
resilience to environmental challenges and diseases. In envi-
ronmental remediation, Se-NPs have been demonstrated to 
remove contaminants from wastewater and soil. The future 
of Se-NPs will entail developing new green synthesis pro-
cedures and optimizing existing methods to increase Se-NP 
yield and stability. Combining Se-NPs with other nanoma-
terials and traditional medicines is expected to create more 
effective and targeted treatments for various ailments. The 
green synthesis of Se-NPs has excellent potential for diverse 
applications, and further study in this field will be critical for 
producing safe and effective nanomaterials that substantially 
benefit society. The phytoconstituents that cap selenium nan-
oparticles (Se-NPs) enhance their therapeutic effectiveness 

in a dose-dependent manner, opening up new possibilities 
for use in the food, pharmaceutical, and biomedical indus-
tries. The biosynthesis of plant-based NPs is a relatively sim-
ple process that is easily scalable for large-scale production. 
This Review provided a comprehensive overview of the cur-
rent status and future prospects of this emerging field. Future 
research on Se-NPs should focus on optimizing green syn-
thesis methods for sustainability and scalability, advancing 
characterization techniques, and exploring the potential of 
Se-NPs in targeted drug delivery systems. In-depth mecha-
nistic studies are needed to understand their biological activ-
ity, and comprehensive toxicity and environmental impact 
assessments will be essential to ensure safety. Efforts should 
also be directed toward clinical translation, including pre-
clinical studies and regulatory framework development. By 
summarizing recent advances in synthesis methods, charac-
terization techniques, and potential applications, this Review 
provides insights into the unique properties and promis-
ing therapeutic potential of Se-NPs. Exciting new avenues 
may enable the design and development of robust biogenic 
Se-NPs that can be produced, stored, and marketed globally 
without risk.
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