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Introduction

Graphite oxide (GO) is a constituent of 
graphene oxide, a derivative of graphene. 
Graphene is a two-dimensional material 
consisting of a single layer of carbon atoms 
arranged in a hexagonal lattice [1]. GO is 
composed of stacked layers of graphene 
oxide sheets with oxygen-containing func-
tional groups such as hydroxyl, epoxy, and 
carboxyl groups attached to the surface [2, 
3]. GO sheets can induce inflammation and 
cell death in rats. However, owing to their 
high biocompatibility and low toxicity, car-
bon nanoparticles have substantial poten-
tial as a biomaterial for both diagnostic and 
therapeutic applications [4, 5].

GO sheets are biocompatible and hence 
suitable for use in biomedical applications 
such as drug delivery, imaging, and tissue 
engineering [6, 7]. Extensive research has 
been conducted both in vitro and in vivo to 

explore the properties and potential appli-
cations of GO. In vitro studies involve test-
ing the effects of GO on cells and tissues 
outside a living organism [8, 9]. GO sheets 
have broad potential applications in fields 
including drug delivery, biosensors, and 
tissue engineering [10]. For instance, GO 
has been used as a drug carrier for cancer 
therapy, thus effectively delivering drugs 
to cancer cells while minimizing harm to 
healthy cells [11, 12].

The inflammation induced by graphene 
oxide in cells contributes to tissue damage 
and impaired kidney function. Although 
prior studies have not specifically addressed 
the effects of GO on the kidneys, they have 
suggested that graphene-based materials, 
including GO, might potentially cause kid-
ney toxicity [5, 13]. A study published in the 
journal Nanotoxicology has investigated the 
potential toxicity of graphene oxide sheets 
in the kidneys in rats [14]. High doses of 
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Abstract

Although diamond-like carbon-coated joint replacements are widely recommended for full bone replace-
ments in humans, their clinical application is substantially limited by contamination with wear particles, 
specifically graphite nanoparticles, which are cytotoxic. This study was aimed at assessing the adverse 
effects of graphite oxide (GO) sheets on the blood and renal tissues of adult male albino rats. A total of 25 
albino rats were procured from the Government College University Faisalabad, Punjab, Pakistan, and accli-
mated for 7 days in well-ventilated enclosures, after approval from the ethical committee at the University 
of Sialkot. The rats were randomly assigned to the following groups: a control group receiving no treatment, 
a vehicle control group receiving normal saline, and three treatment groups (G1, G2, and G3, administered 
GO nanosheets at doses of 5, 6, or 7 mg/kg body weight, respectively). Treatments were delivered through 
intraperitoneal injection on alternating days over 28 days. Animal mortality, hematological parameters, and 
kidney histology were assessed. The control and vehicle control groups showed normal findings, whereas 
the groups exposed to GO exhibited highly significant pathological changes in renal function tests (p<0.05). 
Histological alterations were more severe in the moderate- and high-dose treatment groups than the low-dose 
group, which displayed typical histological features. The treatment groups exhibited various histological 
changes, including vacuolation, renal fibrosis, inflammation, and tubular damage, which were significantly 
more pronounced in the G2 and G3 groups than the G1 group. Thus, exposure to GO sheets resulted in det-
rimental effects on renal tissues in albino rats. The findings suggested that the investigated doses of GO have 
detrimental effects on the health of living organisms.
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graphene oxide sheets have been found to result in significant 
kidney tissue damage, including inflammation [15–18].

Methods

Experimental setup

A total of 25 post-weaning albino rats, all of similar weight, 
were obtained from the animal facility at Government College 
University, Faisalabad, Punjab, Pakistan. Ethical approval 
was granted by the Ethics Committee of the University of 
Sialkot, Punjab, Pakistan (Certificate No. USKT/EIRB/02). 
The rats were divided into five groups of five animals each. 
The rats were housed in steel cages under standard lighting 
conditions and were given free access to water and food. 
Before the start of the experiment, the rats were acclimated 
for 7 days. During that period, they were maintained at a 
temperature of 25±2° C, with a humidity level of 35±5% and 
a 12:12 day-night cycle. The sampling procedure in albino 
rats is shown in a flowchart (Figure 1).

Toxicity assessment

For assessment of toxicity, the rats were divided into five 
groups of five rats each (Table 1). The first group was the 
untreated control group. The second group received intraperi-
toneal injections of 1 ml normal saline (vehicle control). The 
remaining three groups, G1, G2, and G3, received intraperi-
toneal injections of GO nanoparticles (GOs) at doses of 5, 6, 
or 7 mg/kg body weight, respectively, every other day over a 

period of 28 days. Exposure to GO has been predicted to have 
cytotoxic effects [19–22]. The flowchart in Figure 2 shows 
the process of investigation of toxicity induced by GO sheets.

Blood sampling and sacrifice

Blood samples were collected from all animals at the start 
of the trial and again after 28 days of treatment. These sam-
ples were used for various hematological analyses including 
CBC and RFT. On the 29th day, the rats were euthanized, 
and their kidneys were obtained for histological analysis 
with hematoxylin-eosin staining. The method of dissection 
for blood sampling is shown in Figure 3.

Sample collection

Blood samples for hematological examination were collected 
at the beginning of the study and after 28 days of exposure. 
On the 28th day, the animals were fasted overnight, and blood 
samples were collected from the caudal vein of individual 

Figure 1  Flowchart of sampling methods.

Table 1  Doses in Experimental Groups

Group Graphene oxide dose 
(mg/kg, intraperitoneal)

Control 0.00

Vehicle 0.00

G1 5.00

G2 6.00

G3 7.00
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rats into EDTA anticoagulant tubes. These samples were 
analyzed with a hematology autoanalyzer (Shanghaic 
Drawell Intelligent Instrument Co., Ltd, DW-TEK5000 
robotized blood hematology analyzer) to assess hematologi-
cal variables. The rats were then anesthetized with ketamine 
hydrochloride (30 mg/kg BW) and sacrificed. Their renal 
tissues were weighed with a Sartorius balance and fixed for 
histological processing [23, 24].

Hematological analysis of blood

Blood samples were collected from the animals’ hearts and 
transferred into two tubes containing calcium EDTA for 
subsequent CBC analysis. Hematology parameters, includ-
ing RBC, HGB, WBC, LYM, MCH, MCHC, and PLT, were 
immediately analyzed with a hematology auto-analyzer.

Tissue preparation

For tissue fixation, small tissue portions were sub-
merged in a solution of formaldehyde (30–35 ml), 100% 

alcohol (55–60  ml), and glacial acetic acid (10–15 ml). 
After fixation, the tissues were dehydrated with various 
grades of ethanol, then immersed in cedarwood oil until 
they became transparent. Subsequently, the tissues were 
embedded in benzene and paraplast, to form blocks for 
sectioning [25].

Hematoxylin and eosin staining

A hematoxylin stain was prepared by dissolving 2 g hema-
toxylin in 100 ml ethanol. An eosin stain was prepared by 
dissolving 1 g eosin in 100 ml 70% ethanol. The staining 
process involved hydration, deparaffinization, staining, and 
mounting.

Light microscopy

Tissue sections 5 μm thick were examined under a light 
microscope at 40× and 100× magnification. Slides from the 
control and treatment groups were thoroughly examined and 
documented.

Figure 2  Flow chart of toxicity induced by GO sheets.

Figure 3  Dissection of albino rats: (A) rat dissection, (B) kidney view.
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Histological examination

After the animals were sacrificed, fresh kidney tissues 
were fixed, dehydrated, and embedded in benzene and 
paraplast. The tissues were cut into 5 μm sections with 
a microtome and mounted on clean albumenized glass 
slides. Hematoxylin and eosin staining were performed, 
and images were captured for histological examination 
[24, 26].

Statistical analysis

To assess the effects of GO sheets on various hematology 
parameters, we conducted statistical analysis (ANOVA with 
a linear model) in Minitab 17 software. A Tukey test was 
performed to compare the mean values of different groups, 
with a significance threshold set at p <0.05 [27].

Results

The study was conducted at the Exploration Research 
Center, Division of Zoology, Government College University 
Faisalabad, Punjab, Pakistan. The sublethal dose of GOs was 
determined on the basis of the histology, hematology, and 
mortality.

General health observations

Rats were carefully observed daily throughout the experi-
ment. The rats in the control and GO sheet-treatment groups 
displayed good health and exhibited energetic behavior. Rats 
treated with a dose of 7 mg/kg body weight showed signs of 
irritability and diminished activity, but no mortality within 
7 days. Rats treated with 6 mg/kg remained healthy and 

showed normal behavior. Weekly weight measurements over 
4 weeks revealed significant weight loss in the treated rats 
by the end of the study. After 28 days, the control rats were 
thriving, whereas the GO sheet-treated rats exhibited symp-
toms such as dry skin, decreased coelomic fluid, shrunken 
body cavities, and organ fat depletion, thus indicating toxic-
ity at a GO sheet dose of 7 mg/kg (Table 2).

Changes in body weight across 
groups
The animals in the vehicle and control groups behaved nor-
mally and typically gained weight during the study. During 
the first 2 weeks of exposure, no significant changes were 
observed in body weight in any groups (control and treat-
ment) (p>0.05). However, during the third and fourth weeks 
of exposure, we observed significantly (p<0.05) lower body 
weight in the treatment groups receiving moderate (6 mg/kg 
BW) or high doses (7 mg/kg BW) than in the control, vehi-
cle control, and low dose treatment groups (5 mg/kg BW) 
(Table 3).

Exposure to GO caused dose-dependent toxicity to the 
kidney cells, including inflammation, and disruption of cel-
lular processes. GO nanosheets were administered to the 
rats, and their effects on kidney function and histopathol-
ogy were evaluated through social tests including open-field 
tests, maze tests, Morris water maze tests, and novel item 
acknowledgment tests (Table 4).

CRE, UA, and BUN were significantly lower (p>0.05) in 
the G2 and G3 groups (treated with moderate and high GO 
NP doses, respectively) than in the vehicle control group. 
The degree of urea and TBIL were fundamentally expanded 
in treated bunches in a portion subordinate way (p<0.05) 
(Table 5).

ALT, AST, LDH, and ALP were significantly higher 
(p<0.05) in the G2 and G3 treated groups than in the control, 
vehicle control, and low dose treatment groups (Table 6).

Physiological changes

The body loads of the rodents were verified weekly for 
28 days. Toward the end of the trial, the treated rodents in 
bunches 6, 7, and 8 exhibited a significant decrease in body 
weight. The decrease in body weight in the albino rats was 
associated with the kidney tissue histology. GO nanosheet 

Table 2  Descriptions of Experimental Treatments

Group Treatment
Control No treatment

Vehicle Normal saline (intraperitoneally injected)

G1 GOS 5 mg/kg BW (intraperitoneally injected)

G2 GOS 6 mg/kg BW (intraperitoneally injected)

G3 GOS 7 mg/kg BW (intraperitoneally injected)

Table 3  Weekly Body Weight (g) and Renal Somatic Index of Rats in Control and Treatment Groups (Mean±SE)

Parameter  
 

Group
Control   G1   G2   G3   Vehicle

0 week   121.80±0.80a   122.00±1.87a   121.60±1.51a   121.40±0.89a   121.6±2.40a

1st week   132.40±1.10a   133.40±1.14a   132.40±1.14a   133.40±1.14a   132.2±1.00a

2nd week   143.40±0.80a   143.20±1.30a   143.00±1.58a   143.00±1.87a   142.8±1.00a

3rd week   153.60±1.10a   150.40±0.54b   146.20±0.83c   141.80±2.28d ↓   153.4±1.10a

4th week   163.60±0.50a   159.80±1.09b   144.80±1.64c   136.20±2.59d ↓   164.2±0.80a

R/S index   1.73b   1.73b   1.77b   2.33a   2.34a

a,b,c,dLevel of significant increase or decrease in body weight of treated and non-treated groups.
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Table 4  Effects of GO Nanosheets on Hematological Parameters in Albino Rats

Parameter  
 

Group
Control   G1   G2   G3   Vehicle

RBC   6.71±0.15a   5.64±0.11b   4.27±0.05c   3.2±0.24d ↓   6.67±0.21a

WBC   13.36±0.43c   13.80±0.51c   17.53±0.37b   22.25±0.56a ↑   13.82±0.62c

LYM%   48.59±0.56d   51.38±1.61c   66.03±0.74b   96.76±0.49a ↑   47.87±0.62d

MCH   17.38±0.45cd   17.99±0.38c   20.75±0.61b   24.60±0.40a ↑   17.05±0.48d

MCHC   30.83±0.43d   33.20±0.58c   41.56±0.14b   43.28±0.44a ↑   31.04±0.41d

MCV   52.43±0.42d   55.03±0.57c   59.71±0.19b   63.69±0.52a ↑   51.94±0.67d

HCV   42.02±0.72d   54.29±0.54c   59.09±0.59b   62.38±0.46a ↑   42.58±0.32d

PLT   682.40±16.70a   640.40±15.39b   582.40±21.63c   416.6±19.90d ↓   686.60±22.23a

GRA   0.42±0.25a   0.52±0.35a   0.46±0.96a   0.21±0.16a   0.54±0.34a

GRA%   3.90±1.15a   4.72±0.22a   5.16±0.83a   5.45±0.41a   4.41±0.81a

HGB   13.68±0.20a   12.79±0.16b   6.62±0.38c   4.75±0.24d ↓   13.55±0.13a

RDW%   14.17±0.65a   14.29±0.59a   11.19±0.61b   9.27±0.49c ↓   14.29±0.60a

MPV   6.30±0.19b   6.05±0.14b   6.05±0.20b   6.96±0.52a ↑   6.31±0.39b

PDW%   43.91±0.77a   31.26±0.99b   19.98±0.58c   6.52±0.23d ↓   44.87±3.24a

PCT   0.24±0.01d   0.39±0.01c   0.59±0.02b   0.97±0.03a ↑   0.25±0.01d

LPCR   6.21±0.46b   6.14±0.29b   5.76±0.46b   11.12±2.32a ↑   6.00±0.53b

MID   0.54±0.22ab   0.61±0.06ab   0.63±0.05a   0.35±0.19b   0.63±0.04a

MID%   8.49±1.54a   7.24±.060a   8.33±0.82a   6.58±4.30a   8.29±1.14a

Eosin   3.82±0.20b   1.80±0.44c   1.80±0.44c   6.00±0.70a ↑   1.80±0.44c

Mocyt   0.90±0.37b   2.60±0.54b   4.10±1.81b   8.40±0.54a ↑   2.60±0.54b

Nepils%   69.60±6.11a   32.60±4.39c   43.00±8.69c   27.60±1.67c ↓   32.60±4.39c

a,b,c,dLevel of significant increase or decrease in body weight of treated and non-treated groups.

Table 5  Effects of GO Nanosheets on Hematological Parameters in Albino Rats

Parameter  
 

Group
Control   G1   G2   G3   Vehicle

CRE   1.22±0.07a   1.07±0.03b   0.85±0.03c   0.37±0.04d   1.20±0.07a

UA   4.66±0.07a   4.31±0.05b   3.85±0.02c   3.42±0.18d   4.64±0.07a

Urea   49.52±0.26c   53.71±0.51b   72.41±0.47a   72.41±0.47a   49.50±0.26c

TBIL   0.46±0.05c   0.60±0.10c   1.90±0.09b   2.54±0.30a ↓   0.44±0.05c

BUN   21.42±0.45a   15.86±0.66b   9.64±0.18c   6.89±0.60d ↓   21.40±0.45a

a,b,c,dLevel of significant increase or decrease in body weight of treated and non-treated groups.

Table 6  Significantly Increased Parameters (ALT, AST, LDH, and ALP) after Exposure to GO Nanosheets (p<0.05)

Parameter  
 

Group
Control   G1   G2   G3   Vehicle

ALT   13.64±0.06d   47.08±0.90c   123.11±0.51b   144.18±0.53a ↑   13.62±0.06d

AST   40.63±9.30b   48.90±0.66ab   53.71±0.39a   59.35±0.45a ↑   40.60±9.30b

ALP   84.50±1.19d   859.00±15.41c   975.40±12.62b   1172.20±17.90a ↑   85.52±0.72d

LDH   1337.98±0.09d   1551.15±7.92c   2246.80±17.46b   2769.20±24.00a ↑   1337.96±0.09d

a,b,c,dLevel of significant increase or decrease in body weight of treated and non-treated groups.

treatment significantly increased ALT, ASP, ALP, and LDH, 
and significantly decreased CRE, UA, and BUN, thus lead-
ing to physiological changes in kidney structure.

Histopathological analysis

The histology analysis revealed histopathological changes in 
kidney tissue. Exposure of albino rats to GO sheets led to 
glomerulosclerosis, endothelial cell injury, and thickening of 
the glomerular basement membrane (Figure 4).

Discussion

GO sheets are economically important because of their 
widespread industrial use [28–30]. Assessment of their 
potential toxicity is crucial, because nanosheets can come 
into direct or indirect contact with the human body through 
various routes of exposure, such as cutaneous penetration, 
inhalation, oral consumption, or injection [31]. A recent 
study has investigated the toxicity of anatase GO Ns on 
histology and blood parameters in albino rats (liver func-
tion and CBC tests). For 28 days, rats were given GO N 
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doses of 5 mg/kg, 6 mg/kg, or 7 mg/kg every other day. The 
rats in all groups showed no mortality but exhibited behav-
ioral alterations. Sacrifice, appetite reduction, and violent 
behavior were observed in the G3 (7 mg/kg) and G2 (6 
mg/kg) groups, but not in the G1 (5 mg/kg) group. Similar 
behavioral changes were observed by Gurunathan in 2012, 
in which animals treated with high doses of GO showed 
low appetites and diminished physical activity. Herein, 
we investigated the pathophysiological and physiological 
alterations caused by GO Ns in rats. For 28 days, rats were 
administered GO Ns at doses of 5 mg/kg, 6 mg/kg, and 
7 mg/kg on alternating days. The rats in all groups died at 
the same rate. Although sacrifice, appetite reduction, and 
violent behavior were observed in the G2 (6 mg/kg) and 
G3 (7 mg/kg) groups, the G1 (5 mg/kg) group maintained 
normal behavior. Exposure of GO causes adverse impact 
on brain cells due to which they become unable to perform 
their activities properly [26, 32]. Physiological effects also 
occurred in the treated rodents, particularly in bunches 6, 7, 

and 8, which exhibited the body weight were significantly 
decrease the current result of research are not in accordance 
with [33, 34].

In liver function tests, a dose-dependent significant 
improvement in ALT, AST, and ALP enzymes was observed. 
Studies have shown that urea, creatinine, and uric acid levels 
increase in the presence of GO nanoparticles [35, 36]. GO 
Ns were administered to rats intravenously as a single injec-
tion (5 mg/kg BW) of GO N suspension in saline. The tissue 
content of GO Ns was measured after 1, 14, and 28 days. The 
kidneys showed a high GO nanosheet content. Liver func-
tion tests revealed dose-dependent increases in ALT, AST, 
and ALP enzymes—findings similar to those reported by 
Abbasi-Oshaghi et al. in 2019. The impacts of GO sheets on 
the kidney, GO sheet were found in renal cells, and glomer-
uli infection can produce pathological changes and nephron-
like toxicity [37, 38]. Furthermore, as compared with the 
control group, 25 mg/kg GO N treatment markedly increases 
serum urea levels [39–42].

Figure 4  Histopathological analysis in albino rats.
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Renal toxicity induced by GO nanoparticles in albino rats 
can lead to various physiological changes within the kidneys 
and the overall organism; frequently observed physiological 
changes include renal function impairment, inflammation, 
tubular damage, distal tubular damage, histopathological 
changes, renal fibrosis, functional impairment, and other 
factors influencing renal toxicity. Research examining the 
effects of GO on kidney function impairment has indicated 
disruption of normal function [43], manifesting as changes 
in the glomerular filtration rate, impaired tubular reabsorp-
tion and secretion, and altered electrolyte and fluid balance 
[44–47]. Impaired kidney function may lead to disturbances 
in urine production and composition, and to inflammation 
in the body, particularly in the kidneys. The exposure of 
albino rats to GO can trigger an inflammatory response in 
the kidneys [48–51]. This response involves the release of 
pro-inflammatory cytokines and chemokines, recruitment 
of immune cells, and activation of inflammatory pathways. 
Sustained inflammation can exacerbate renal injury and con-
tribute to further tissue damage [48, 51].

GO has been shown to accumulate in the renal tubules 
in albino rats, particularly the proximal tubules. This accu-
mulation can result in tubular damage, including tubular 
dilation, vacuolization, and epithelial cell necrosis, thus 
leading to glomerular damage [52–54]. These changes can 
impair the filtration function of the glomeruli and lead to 
proteinuria, the presence of excessive protein in the urine 
[55]. Despite glomerular damage, GO exposure in the 
distal tubules can impair renal function, and contribute 
to electrolyte abnormalities and metabolic acidosis [56]. 
Renal fibrosis also occurred in albino rats after excessively 
long exposure to GO. Prolonged exposure to GO nanopar-
ticles can lead to the development of renal fibrosis, charac-
terized by aggregation of extracellular lattice components 
within renal tissue [57]. Renal fibrosis further impairs kid-
ney function and contributes to the progression of renal 
damage [58, 59]. Furthermore, renal toxicity induced by 
GO leads to significant functional impairments in albino 
rats. The glomerular filtration rate is frequently affected, 
thus decreasing filtration efficiency [60–63]. Several fac-
tors influence the severity and extent of renal toxicity 
induced by GOs, including GO dose and concentration, 
exposure duration, administration route, and individual 
susceptibility. Higher doses and prolonged exposure to 
GOs tend to result in more severe renal damage [64, 65]. 
Exposure of albino rats to GO sheets resulted in observ-
able kidney histopathological changes, observed through 
microscopic examination of kidney tissue. Glomerular 

damage is characterized by glomerulosclerosis, endothe-
lial cell injury, and thickening of the glomerular basement 
membrane [66, 67].

Conclusion

GO sheets were observed to cause dose-dependent renal 
toxicity in albino rats. GOs decreased physical activity 
while increasing hematological and histological changes. 
The harmful effects of GOs on the blood and kidney 
tissues in male albino rats were investigated. Histological 
findings revealed necrosis and apoptosis in the GO sheet 
treatment groups, in contrast to the control and vehicle 
control groups. The observed histological alterations in 
the kidneys were caused by inflammation, tubular dam-
age, renal fibrosis, and distal tubular damage. Our results 
indicated that GO sheet administration in rats had sig-
nificant negative effects on blood parameters and kidney 
function.
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