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Introduction

Cancer remains a leading cause of mortality 
worldwide, ranking second only to cardio-
vascular disorders [1]. By 2040, 28.4 mil-
lion new cancer cases have been projected 
annually, representing a 47% increase since 
2020 [2]. Currently, breast cancer accounts 
for 2.3 million new cases worldwide, sur-
passing lung cancer as the most frequently 
diagnosed cancer. It continues to substan-
tially influence global cancer-related mor-
tality [3]. Each year, breast cancer affects 
approximately 1 million women and leads 
to more than 410,000 deaths [4]. By 2030, 
breast cancer is expected to be the deadli-
est cancer worldwide, with an estimated 10 
million new cases [5].

Traditional treatments for breast  cancer, 
including radiotherapy, surgery, and 
chemotherapy, have several drawbacks, 

such as toxicity and adverse effects [6–8]. 
Although numerous chemotherapeutic 
drugs are available, their effectiveness 
is limited by cancer cell diversity, the 
emergence of drug-resistant cell popula-
tions, and complex tumor interactions [9]. 
Consequently, researchers have explored 
novel phytonutrients and herbal materials 
as potential treatments [10].

Ayurvedic medicine, one of the old-
est traditional healing systems, has long 
been recognized for its holistic approach to 
health and disease management. Research 
is increasingly focusing on the potential of 
Ayurvedic botanicals in cancer treatment, 
particularly because of their diverse bioac-
tive compounds that exhibit anti-tumor prop-
erties. These naturally occurring compounds 
offer promising alternative treatments due 
to their wide availability, therapeutic poten-
tial, and reduced cytotoxicity [11]. These 
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Abstract

Background: In women, breast cancer is currently among the most common cancers and the second major 
cause of cancer-related mortality. One therapeutic target for breast cancer is the progesterone receptor (PR), 
which can be inhibited by specific PR modulators.
Methods: Current anti-cancer medications have notorious adverse effects. Consequently, an urgent need exists 
to identify less hazardous, more effective medicines with few to no adverse effects. One strategy uses ancient 
herbal remedies to create medications derived from nature. Herein, we used data from the Dr. Duke, IMP-
PAT, PubChem, Binding DB, UniProt, and DisGeNET databases to construct a network in Cytoscape 3.10.0. 
Through a polypharmacology approach, bioactives with similarity indices greater than 0.6 were screened 
and docked with the PR. The top ten ligands with good docking scores were further subjected to interaction 
analysis in AutoDock v.4.2 software. We additionally analyzed the ADMET properties of the phytochemicals.
Results: Procurcumenol and alpha-turmerone exhibited superior interactions with PR, with binding affinities 
of −7.85 kcal/mol. All compounds met Lipinski’s rule of five and were effective ligands for the PR according 
to ADMET data analysis. Our findings suggest that procurcumenol and alpha-turmerone may serve as poten-
tial anti-breast cancer agents; specifically targeting the PR in breast cancer cells.
Conclusion: Understanding of anti-breast cancer activity can be facilitated through experimental validation 
of network analysis and molecular docking findings.
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compounds have been found to inhibit various cancer develop-
ment mechanisms, including tumor-promoting angiogenesis, 
replicative immortality, invasion, and metastasis [12]. Effective 
cancer treatment involves the targeted delivery of medications 
to diseased tissues while minimizing harm to healthy tissues 
[13]. Cancer cells often upregulate growth- and survival-pro-
moting receptors on their surfaces; therefore, these receptors 
have provided reliable therapeutic targets [14, 15].

Breast cancer notably shows diverse receptor expres-
sion patterns: the ovarian steroid hormones progesterone 
and estrogen play key roles in disease progression through 
their respective receptors, the progesterone receptor (PR) 
and estrogen receptor (ER) [16–19]. Approximately 70% 
of breast cancers in older women are ER+/PR+, thus high-
lighting the potential for therapies targeting these receptors 
[17, 20, 21]. PGR, a member of the nuclear receptor super-
family, regulates the expression of genes associated with cell 
proliferation and differentiation in breast tissue. Its activation 
has been shown to influence tumor growth and metastasis; 
therefore, it is a crucial target for therapeutic intervention. 
These findings highlight the importance of investigating 
novel compounds that modulate this receptor, to contribute 
to more effective strategies for breast cancer management.

Numerous Ayurvedic botanicals targeting the PR have 
been tested for breast cancer treatment. Specifically, the 
structure-based multitargeted molecular docking analysis 
of selected furanocoumarins has shown promising interac-
tions with breast cancer targets [21]. Additionally, molecu-
lar docking, as well as absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) studies, have predicted 
the anti-breast cancer effects of aloin through targeting both 
the ER and PR [22]. In silico studies have further explored 
various phytochemicals—particularly 4-methoxy coumes-
terol, apigenin, biochanin, coumesterol, crocetin, curcumin, 
daidzein, diosgenin, formononetin, gabridin, genestein, 
hesperetin, indole-3-carbinol, kaempferol, lignan, luteolin, 
lycopene, naringenin, quercetin, and resveratrol—as anti-
cancer agents, by evaluating their interactions with the ER 
and PR [23]. Moreover, recent research has highlighted the 
importance of virtual screening and molecular dynamics 
simulations to identify and optimize anti-breast cancer com-
pounds from natural sources [24, 25].

Despite the wealth of available information, a gap remains 
in understanding the specific molecular mechanisms through 
which these botanicals interact with key targets, such as the 
PR, in breast cancer. Consequently, structure-based virtual 
screening is increasingly performed in medicinal research, 
because of its high efficiency [26]. Molecular docking is an 
affordable and effective method for predicting drug- receptor 
interactions and stable binding sites [27, 28]. Network phar-
macology systematically accumulates and analyzes vast 
amounts of knowledge regarding phytochemicals, cellular 
targets, and mechanisms, thereby providing valuable insights 
into traditional medicines and improving current drugs’ reli-
ability and effectiveness [29].

This study presents an innovative approach to evaluat-
ing the anti-breast cancer potential of selected Ayurvedic 
botanicals by integrating network ethnopharmacology and 
advanced molecular docking techniques. Our aim was to use 
a comprehensive in silico analysis to elucidate the complex 

molecular interactions between these botanicals and the PR, 
thus providing a deeper understanding of their therapeutic 
mechanisms. This integrative method not only highlights the 
synergy between traditional knowledge and modern compu-
tational tools, but also offers novel insights into the potential 
of these botanicals as effective agents against breast cancer.

Materials and methods

Network pharmacology studies

Screening of active ingredients

In this investigation, we examined the phytoconstituents 
from selected Ayurvedic botanicals (Withania somnifera, 
Asparagus racemosus, Azadirachta indica, Linum usitatis-
simum, Trigonella foenum-graecum, Curcuma longa, Aloe 
barbadensis, Glycyrrhiza glabra, and Murraya  koenigii) 
traditionally documented to possess anti-breast cancer 
activity. Dr. Duke’s Phytochemical and Ethnobotanical 
Databases online platform [30], Indian Medicinal Plants, 
Phytochemistry and Therapeutics 2.0 [31], and literature 
mining were used to gather information regarding the phyto-
constituents of selected Ayurvedic botanicals.

The investigation used data in .sdf format, which are 
available free of charge, and 3D structures of phytoconstit-
uents. In PubChem [32], we looked up the common names 
and precise structures of the phytoconstituents of selected 
Ayurvedic botanicals.

Establishment of the target

The RCSB PDB database [33] was used to gather data on the 
PR. The species were confined to human sources, and the tar-
get was identified. The PR as a therapeutic target for breast 
cancer was searched with DisGeNET [34]. Through UniProt 
[35], a standard name for the protein target was found.

Prediction of bioactives targeting the PR

The .sdf files containing the structures of  phytoconstituents 
from selected Ayurvedic botanicals were uploaded to the 
Binding DB (https://www.bindingdb.org) to predict the bind-
ing of bioactives targeting the PR for the treatment of breast 
cancer. Bioactives with a score between 0.6 and 1 were 
selected. The multiple databases linked to Binding DB were 
used to extract additional data on the target. The UniProt IDs 
provided in Binding DB were used to retrieve the protein 
symbols from UniProt. DisGeNET was searched for associ-
ations between the bioactive target and breast cancer.

Network construction

Cytoscape 3.10.0 was used to visually represent the net-
work, and analyze and update the data. Data pairs of selected 
Ayurvedic botanicals with bioactive PCIDs, bioactive PCIDs 
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with the PR, and the PR with breast cancer were built in 
Microsoft Excel. The data pairs were imported and used 
to create a network map of the therapeutic components 
and the disease target. The nodes in the network diagram 
indicate selected Ayurvedic botanicals, bioactives, PR, and 
breast cancer, whereas the edges indicate how the nodes are 
connected. The network was examined with the Network 
Analyzer function [36, 37].

Docking studies

Selection of ligands

Through a network pharmacology approach, we screened 
bioactives with a similarity index greater than 0.6 and that 
were found to be associated with the PR (1SQN) for further 
study.

Preparation of ligands

The 3D structures of inhibitors and their respective PubChem 
CIDs were obtained and saved in .sdf format. Furthermore, 
the 3D structures of all ligands were loaded into PyMOL 
software for conversion of 3D structures from .sdf to .pdb 

format. In PyMOL software, metals were also removed 
from the ligand structures for appropriate docking studies. 
The prepared ligands were saved in .pdb format. A number 
of torsions from zero to six was chosen; when any ligand 
showed more than six torsions, the value was adjusted to six. 
Hydrogen (H-) bond interactions were also calculated and 
described. The presence of H-bonds indicates stable interac-
tions between ligands and proteins. Discovery Studio 2020 
Client and Chimera software was used to depict H-bonds, 
2D images, and protein-ligand interactions images for good 
visualization of the docking.

Preparation of the protein

The crystal structure of the target protein was retrieved from 
the Protein Data Bank (PDB) under PDB ID 1SQN and sub-
jected to further docking studies.

Induced-fit molecular docking

Molecular docking, an important component of computer- 
assisted drug discovery, aids in predicting the intermolec-
ular frameworks formed between proteins and ligands, and 

Figure 1 PPI network illustrating the interactions between bioactive compounds from selected Ayurvedic botanicals and the PR in the con-
text of breast cancer. The network map visually represents the connections between key bioactives and PR, thereby highlighting potential 
therapeutic targets and pathways influenced by these compounds, which may contribute to their anti-breast cancer activity.
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outputs the appropriate binding between molecules. Docking 
was performed in the 4.2.6 program, with the implemented 
empirical free energy function and the Lamarckian Genetic 
Algorithm. The grid maps were calculated with AutoGrid. In 
all dockings, a grid map with 40 × 40 × 40 points and a grid-
point spacing of 0.714 Å was applied.

The best conformation with the lowest docked energy 
was chosen from the docking search. The interactions of 
complex protein-ligand conformations including H-bonds 
and bond lengths were analyzed in PyMOL software, UCSF 
Chimera, and Accelrys Discovery Studio Visualizer soft-
ware [36, 38, 39].

Figure 2 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with alpha-atlantone shows a 3D model of the 
interactions, and the 2D interaction patterns and H-bond interaction.
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CASTp identification

Computed Atlas of Surface Topography of Proteins (CASTp) 
(http://cast.engr.uic.edu) provides an online resource for 
locating, delineating, and measuring concave surface regions 
on 3D structures of proteins. These regions include pockets 
located on protein surfaces and voids buried in the protein 
interior [40].

ADMET studies

Computational ADMET prediction is frequently used in 
modern drug discovery to predict drug pharmacokinetics 
and toxicity. ADMET properties are necessary for the selec-
tion and development of drug candidates. The ADMET 
properties for the compounds alpha-atlantone, 18-alpha- 
glycyrrhetinic acid, alpha-turmerone, 18-beta-glycyrrhetinic 

Figure 3 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with 18-alpha-glycyrrhetinic acid shows a 3D 
model of the interactions, and the 2D interaction patterns and H-bond interaction.

Figure 4 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with alpha-turmerone shows a 3D model of the 
interactions, and the 2D interaction patterns and H-bond interaction.
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acid, bisabola-3,10-dien-2-one, caffeic acid, curdione, cur-
cumenone, dehydrocurdione, and procurcumenol were esti-
mated in ADMETlab. Greater human intestinal absorption 
(HIA) indicates that a compound is better absorbed from 
the intestinal tract after oral administration. However, deter-
mining the toxicity of chemical compounds is necessary to 
identify their harmful effects on humans, animals, plants, or 
the environment [41]. Here, we used ADMETlab2.0 https://
admetmesh.scbdd.com/ to verify the prediction of ADMET 
properties.

Results and discussion

Network pharmacology studies

Screening of active ingredients

The botanical ashwagandha (Withania somnifera) has been 
documented to contain 52 phytoconstituents. Shatavari 
(Asparagus racemosus) contains 28 phytoconstituents. 
Neem (Azadirachta indica) contains 23 phytoconstituents. 
Alsi seeds (Linum usitatissimum) contain 60 phytocon-
stituents. Methi (Trigonella foenum-graecum) contains 65 

phytoconstituents. Haldi (Curcuma longa) contains 98 phy-
toconstituents. Ghritkumari (Aloe barbadensis) contains 21 
phytoconstituents. Yashtimadhu (Glycyrrhiza glabra) con-
tains 100 phytoconstituents. Finally, Kadi Patta (Murraya 
koenigii) contains 86 phytoconstituents.

Establishment of the target

For the PR, the data were as follows: PDB ID, progester-
one receptor (1SQN); protein name, progesterone recep-
tor; organism, Homo sapiens; resolution, 1.45 Å; sequence 
length = 261; UniProt ID P06401; gene name, HUMPR.

Prediction of bioactives against the target

A total of 32 bioactives from Ashwagandha (Withania som-
nifera), 3 from Shatavari (Asparagus racemosus), 2 from 
Neem (Azadirachta indica), 2 from Alsi seeds (Linum usi-
tatissimum), 12 from Methi (Trigonella foenum-graecum), 
10 from Haldi (Curcuma longa), 5 from Ghritkumari (Aloe 
barbadensis), 14 from Yashtimadhu (Glycyrrhiza glabra), 
and 4 from Kadi Patta (Murraya koenigii) showed interaction 
scores with the PR equal to or greater than 0.6 (Figure 1). 

Figure 5 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with 18-beta-glycyrrhetinic acid shows a 3D 
model of the interactions, and the 2D interaction patterns and H-bond interaction.
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Figure 6 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with bisabola-3,10-dien-2-one shows 3D 
model of the interactions, and the 2D interaction patterns and H-bond interaction.

The bioactives from selected Ayurvedic botanicals screened 
through a polypharmacology approach were subjected to net-
work construction and analysis in Cytoscape v.3.2.1 software.

Network construction

The screened bioactives from selected Ayurvedic botanicals 
were subjected to network construction (Figure 1) and anal-
ysis in Cytoscape software.

Molecular docking studies

The process of identifying active site residues and target-
ing structures is crucial in drug design, particularly through 
ligand-protein docking. By predicting the active site and 
selecting the optimal 3D structure of the target protein, 
potential binding interactions can be better understood. 
In this study, docking was performed by using the PR 
with various ligands, and the conformations with the low-
est docked energy were selected. The active site was pre-
dicted after selection of the 3D structure of the target pro-
tein. The best conformation with the lowest docked energy 

was chosen from the docking search. After docking of the 
PR (1SQN) with alpha-atlantone, 18-alpha-glycyrrhetinic 
acid, alpha-turmerone, 18-beta-glycyrrhetinic acid, bis-
abola-3,10-dien-2-one, caffeic acid, curdione, curcume-
none, dehydrocurdione, and procurcumenol, we observed 
favorable binding energy between the protein and ligands 
for both alpha-turmerone and procurcumenol (−7.85 kcal/
mol). A number of torsions from zero to six was chosen; 
if any ligand showed more than six torsions, the value was 
adjusted to six. H-bond interactions were also calculated 
and described. The presence of H-bonds indicates sta-
ble interactions between ligands and proteins. Discovery 
Studio 2020 Client and Chimera software were used to 
depict H-bonds, 2D images, and protein-ligand interaction 
images for good visualization of the docking. After docking 
of the PR (1SQN) with alpha-atlantone (−7.69 kcal/mol) 
(Figure 2), 18-alpha- glycyrrhetinic acid (−6.36 kcal/mol) 
(Figure 3), alpha- turmerone (−7.85 kcal/mol) (Figure  4), 
18-beta-glycyrrhetinic acid (−5.38 kcal/mol) (Figure  5), 
bisabola-3, 10-dien-2-one (−7.56 kcal/mol) (Figure 6), caf-
feic acid (−5.87 kcal/mol) (Figure 7), curdione (−7.71 kcal/
mol) (Figure 8), curcumenone (7.77 kcal/mol) (Figure 9), 
dehydrocurdione (7.73 kcal/mol) (Figure  10), and pro-
curcumenol (7.85 kcal/mol) (Figure  11), we observed 
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Figure 7 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with caffeic acid shows a 3D model of the 
interactions, and the 2D interaction patterns and H-bond interaction.

Figure 8 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with curdione shows a 3D model of the inter-
actions, and the 2D interaction patterns and H-bond interaction.
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favorable binding energies between the protein and ligands 
(Table 1). The compounds 18-alpha-glycyrrhetinic acid and 
caffeic acid formed three hydrogen bonds with the PR.

Lipinski’s rule of five was not violated by any compounds 
(Table 2). According to these guidelines, tested compounds 
were therefore anticipated to have good bioavailability and 
to satisfy drug likeliness characteristics [41].

CASTp identification

Based on the CASTp server analysis, we selected pocket 1, 
which had an area of 218.784 Å2 and a volume of 151.741 Å3. 
This pocket contained 22 amino acids (Figure 12) located 
at the following positions within the protein sequence: 715, 
718, 719, 721, 722, 725, 755, 756, 759, 760, 763, 766, 778, 
794, 797, 801, 887, 890, 891, 894, 905, and 909.

ADMET studies

ADMET analysis, a computerized approach to drug devel-
opment, can aid in early stages of drug discovery [41]. 
ADMET features aid in the analysis of new chemical 
substances to identify possible candidates that might be 

metabolized, cross membranes, and trigger or disable cel-
lular functions [42].

A drug’s ability to cross membranes quickly and easily 
can be estimated by measuring or computing its octanol/
water partitioning coefficient (logP) [43]. Alpha-atlantone, 
18-alpha-glycyrrhetinic acid, and 18-beta-glycyrrhetinic acid 
exhibited logP values above 4. Additionally, the hydrophobic 
nature of bisabola-3,10-dien-2-one led to a logP value viola-
tion, with a value exceeding 5. The low logP value for caffeic 
acid was supported by the presence of hydrophilic hydroxyl 
groups. Occasionally, natural products’ lipophilicity does 
not precisely correlate with their physicochemical profiles, 
thus violating the rule of five [44]. Procurcumenol exhibited 
a lower logP (2.796) value than alpha-turmerone (3.956). For 
oral medications, a logP value of 2–3 is frequently consid-
ered ideal to balance permeation with first-pass clearance.

An essential characteristic of a drug-like molecule is solu-
bility, given as log S, with optimal values ranging from −0.5 
to −5.5 [45]. The solubility of all molecules was within the 
above-mentioned range, thereby indicating good solubility 
of each phytochemical. The highest solubility was observed 
for caffeic acid (−1.12), and the lowest solubility was 
observed for alpha-atlantone (−4.56). After oral administra-
tion, drugs are absorbed in the intestine and subsequently 
reach their specific targets. All molecules showed positive 

Figure 9 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with curcumenone shows a 3D model of the 
interactions, and the 2D interaction patterns and H-bond interaction.
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Figure 10 Molecular docking of the progesterone receptor (1SQN) binding domain complexed with dehydrocurdione shows a 3D model of 
the interactions, and the 2D interaction patterns and H-bond interaction.

Figure 11 Molecular docking of the progesterone receptor (1SQN) binding domain Complexed with procurcumenol shows a 3D model of the 
interactions, and the 2D interaction patterns and H-bond interaction.
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Table 1 PR Inhibition by Various Phytoconstituents

Protein  Ligand  Binding 
Energy  
(kcal/mol)

 No. H 
Bonds

 Interacting 
Residue

 Final 
Intermolecular 
Energy  
(kcal/mol)

 vdW + Hbond 
+ desolv 
Energy  
(kcal/mol)

 Electrostatic 
Energy  
(kcal/mol)

 Torsional 
Free 
Energy  
(kcal/mol)

1SQN  Alpha-atlantone  −7.69  01
H1: 2.99 Å

 GLN:725 (H1)
MET:759
LEU:721
LEU:718
PHE:778
MET:756
LEU:763
MET:909
VAL:760
MET:801

 −8.28  −8.18  −0.10  +0.89

 18-Alpha-
glycyrrhetinic 
acid

 −6.36  03
H1: 1.87 Å
H2: 2.98 Å
H3: 2.76 Å

 ASP:882 (H1)
GLN:886 (H2)
ASN:893 (H3)
LYS:885
TYR:890

 −7.26  −7.01  −0.25  +0.89

 Alpha-turmerone  −7.85  01
H1: 3.07 Å

 GLN:725 (H1)
VAL:760
MET:756
LEU:887
MET:759
LEU:797
TYR:890
MET:801
PHE:778
LEU:718
LEU:721

 −8.61  −8.52  −0.09  +1.19

 18-Beta-
glycyrrhetinic 
acid

 −5.38  02
H1: 2.09 Å
H2: 2.08 Å

 SER:793 (H1)
ASP:882 (H2)
TYR:890
LEU:889
LEU:797

 −6.24  −6.36  +0.12  +0.89

 Bisabola-3,10-
dien-2-one

 −7.56  01
H1: 3.32 Å

 VAL:760 (H1)
LEU:887
LEU:797
MET:801
LEU:718
LEU:763
MET:756
MET:909
LEU:721
MET:759
TRP:755
PHE:778

 −7.89  −7.88  −0.01  +1.19

 Caffeic acid  −5.87  03
H1: 2.59 Å
H2: 2.87 Å
H3: 2.16 Å

 PHE:778 (H1)
GLN:725 (H2)
ASN:719 (H3)
ARG:766
LEU:718

 −6.35  −5.70  −0.65  +1.49

 Curdione  −7.71  00  LEU:718
LEU:721
LEU:887
MET:759
LEU:763
VAL:760
PHE:778
MET:756

 −7.95  −7.96  +0.02  +0.30

 Curcumenone  −7.77  02
H1: 2.91 Å
H2: 3.31 Å

 GLN:725 (H1)
ARG:766 (H2)
LEU:887
MET:756
VAL:760
MET:801
LEU:797
LEU:718
TYR:890

 −8.73  −8.61  −0.12  +0.89
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Table 2 Lipinski’s Rule of Five and Other Information for Ligands

No. Name of Co-former Molecular 
Formula

Mol. Weight 
(g/mol)

XlogP3 Hydrogen 
Bond Donor

Hydrogen 
Bond Acceptor

Rotatable 
Bond

1 Alpha-atlantone C15H10O5 218.33 4.1 0 1 3

2 18-Alpha-glycyrrhetinic acid C28H48O 470.7 6.4 2 4 1

3 Alpha-turmerone C27H42O3 218.33 3.8 0 1 4

4 18-Beta-glycyrrhetinic acid C15H10O5 470.7 6.4 2 4 1

5 Bisabola-3,10-dien-2-one C16H12O5 220.35 4.1 0 1 4

6 Caffeic acid C15H10O7 180.16 1.2 3 4 2

7 Curdione C21H24O4 236.35 2.7 0 2 1

8 Curcumenone C29H50O 234.33 2.4 0 2 3

9 Dehydrocurdione C28H42O5 234.33 2.8 0 2 0

10 Procurcumenol C17H14O8 234.33 2.3 1 2 0

Figure 12 CASTp of PR.

Protein Ligand Binding 
Energy 
(kcal/mol)

No. H 
Bonds

Interacting 
Residue

Final 
Intermolecular 
Energy 
(kcal/mol)

vdW + Hbond 
+ desolv
Energy
(kcal/mol)

Electrostatic 
Energy 
(kcal/mol)

Torsional 
Free 
Energy 
(kcal/mol)

Dehydrocurdione −7.73 00 LEU:721
LEU:718
MET:756
LEU:887
VAL:760
PHE:778
LEU:763
MET:759

−7.73 −7.73 +0.01 +0.00

Procurcumenol −7.85 01
H1: 2.17 Å

LEU:718 (H1)
LEU:721
MET:759
VAL:760
LEU:763
PHE:778
MET:801

−8.16 −8.14 −0.02 +0.30

Table 1 (continued)
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results regarding HIA. No molecules exhibited human intes-
tinal permeability. Therefore, further work on permeability 
development is required for these drugs. Parameters such as 
BBB penetration and Caco-2 permeability have been studied 
to assess membrane permeability [46]. The BBB and Caco-2 
values for all molecules showed positive values, thus sug-
gesting an ability to easily cross barriers. Each tested mole-
cule exhibited negative Caco-2 permeation values. All phy-
tochemicals except alpha-atlantone, alpha-turmerone, and 
caffeic acid showed BBB permeability. The failure of BBB 
permeation by caffeic acid might have been due to its high 
hydrophilicity (logP 1.43). The absorption and permeability 
of drugs across the membranes such as the BBB can be opti-
mized by using total polar surface area (TPSA) descriptors 
[47, 48]. When the TPSA exceeds 140 Å2, membrane per-
meation is normally restricted [49]. The TPSA values for all 
molecules ranged between 17.07 and 77.76.

P-glycoprotein (P-gp) efflux testing is a crucial step in the 
development of anti-cancer drugs, because P-gp is highly 
expressed in cancerous cells, where it prevents cells from 
absorbing chemotherapeutic drugs and causes cancerous 
cells to establish transporter-mediated resistance to anti-tu-
mor therapies [50, 51]. P-gp substrates are transported 
back into the gastrointestinal lumen by P-gp, reducing the 
absorption and, consequently, the effectiveness of certain 
medications. The screened phytochemicals were found not 
to be P-gp substrates. All bioactives except 18-alpha-gly-
cyrrhetinic acid, 18-beta-glycyrrhetinic acid, caffeic acid, 
dehydrocurdione, and procurcumenol were found to be P-gp 
inhibitors, thus enabling the dissemination of bioactives 
without restricting cellular absorption.

Furthermore, understanding drug binding to various plasma 
proteins is imperative, because of influences on drug thera-
peutic effects. The manner in which a drug attaches to plasma 
proteins crucially affects its physiological function [52]. All 
tested bioactives exhibited high PPB (>85%). The bioactives 
therefore would leave the body slowly and would require some 
time to start working, because only the free fraction of the 
chemical can initiate the desired therapeutic effect. Fraction 
unbound (Fu) is an important factor requiring precise quantifi-
cation, because it markedly affects the calculation of therapeu-
tic indices, the establishment of PK/PD correlations, and the 

prediction of interactions between drugs [53]. All chemicals 
showed a low Fu (<20%), which might potentially affect their 
clearance, pharmacological action, half-lives, and partitioning 
from blood to tissue. An essential drug-metabolizing enzyme 
in humans is CYP3A4. Cytochrome P450 (CYP450) is con-
sidered the primary parameter for assessing the ADME of 
medications, because of its function in phase I drug metabo-
lism [54]. The inhibition of CYP3A4 can directly lead to drug 
toxicity, drug-drug interactions, and other adverse effects [41]. 
No tested phytochemicals were found to be inhibitors or sub-
strates of CYP3A4.

LD50 values are frequently used for primary toxicity 
assessment, to describe the relative risks associated with 
the acute toxicity of substances. In general, more hazardous 
chemicals have lower LD50 values [49, 55]. All bioactives 
were found to be Ames test negative (non-toxic) and showed 
no signs of rat oral acute toxicity. However, most phyto-
chemicals showed skin sensitization and carcinogenicity. 
All moieties except caffeic acid showed respiratory toxicity. 
Detailed results are described in Table 3.

Conclusion

In this investigation, network analysis was instrumental in 
identifying plant bioactives capable of interacting with the 
PR. Moreover, the careful evaluation of ADMET parameters 
yielded critical insights into the drug likeliness, toxicity pro-
files, and permeability of these bioactives. Molecular dock-
ing further facilitated deeper exploration of their interaction 
mechanisms with the PR, and notably highlighted alpha- 
turmerone and procurcumenol as promising candidates for 
breast cancer therapeutics. These discoveries may provide a 
foundation for future endeavors aimed at formulating inno-
vative dosage forms for breast cancer treatment. By enabling 
a nuanced understanding of the intricate interplay between 
bioactive constituents and the PR, this study may provide 
guidance for drug development and clinical translation. In 
the future, experimental validation will be imperative to cor-
roborate these findings and enable practical implementation 
in breast cancer management.
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