
BIOI 2024, Vol 5, 20 1
https://bio-integration.org doi: 10.15212/bioi-2024-0016 
© 2024 The Authors. Creative Commons Attribution 4.0 International License

Introduction

In recent decades the emergence of infec-
tious diseases has captured global  attention 
[1, 2]. These diseases carry a significant 
threat to public health given the viru-
lence, mortality rates, modes of transmis-
sion, and effect on patients’ quality of 
life [2]. Emerging infectious diseases are 
those infectious diseases that show signs 
of first occurring in a community or rap-
idly increasing in frequency or geographic 
spread according to the World Health 
Organization (WHO) [3]. Infectious dis-
eases have remained the leading cause of 
morbidity and mortality throughout the 
1970s, as demonstrated by the develop-
ment of severe acute respiratory syndrome 
coronavirus (SARS-CoV-2) in 2019 and 
acquired immunodeficiency syndrome 
(AIDS) in 1978 [4]. Zoonotic transmission 
accounts for approximately 60% of emerg-
ing infectious diseases with 70% originat-
ing in wildlife [5]. Notably, some infectious 
agents that were once deemed inconse-
quential to public health have resurged, 
resulting in severe effects on the global 

population [6]. Moreover, some patho-
gens have exhibited an increased incidence 
and prevalence worldwide that are driven 
by factors, such as mutation, therapeutic 
resistance, and pathogen evolution [7].

While advances in medical science and 
technology have equipped us with potent 
tools to combat these diseases, several lim-
itations and challenges persist. The rapid 
mutation rates of some pathogens, such as 
influenza virus and HIV, pose significant 
hurdles in the development of effective 
and long-lasting vaccines [8]. In addition, 
the rise in antimicrobial resistance (AMR) 
has emerged as a formidable challenge, 
rendering many standard treatments inef-
fective and complicating the management 
of common infectious diseases [9]. The 
socioeconomic disparities across differ-
ent geographic regions further exacerbate 
infectious disease control because limited 
access to healthcare services and insuffi-
cient infrastructure hinder timely diagnosis 
and treatment [10]. Moreover, the global 
interconnectedness facilitated by mod-
ern travel and trade accelerates the spread 
of infectious agents, which complicates 
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Abstract

The emergence of infectious diseases, including viral zoonoses, has allowed intensive research into novel 
therapeutic approaches. Stem cell therapy, mostly using mesenchymal stem cells (MSCs), has garnered sig-
nificant attention due to the immunomodulatory properties and tissue repair capabilities. MSCs have demon-
strated promise in treating severe COVID-19 cases and several clinical trials have revealed that MSC therapy 
improves 28-day survival rates, reduces mortality, and accelerates recovery. These cells effectively mitigate 
a cytokine storm, relieve pulmonary symptoms, and positively influence organ recovery, including the liver 
and kidneys. Bioanalytical readings return to normal following MSC administration, emphasizing the poten-
tial in managing COVID-19-induced complications. MSC therapy offers a potential solution for infection 
with the influenza virus, which is responsible for historical pandemics and epidemics, and remains a global 
health concern. MSCs inhibit immune cell-mediated responses and reduce lung damage in animal models, 
and despite antiviral drugs, influenza-induced manifestations persist. MSCs, with an ability to counteract 
inflammation and promote lung tissue repair, hold promise for managing influenza infections. While MSCs 
offer therapeutic benefits, certain challenges remain. Specifically, ethical considerations, regulatory hurdles, 
and scalability are some of the challenges that hinder widespread adoption. However, ongoing systematic 
reviews and meta-analyses provide real-time insight that support the security and effectiveness of MSC 
therapy.
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containment efforts [11]. Addressing these challenges 
requires a multidisciplinary approach involving advances 
in biomedical research and robust public health strategies, 
international collaboration, and policy interventions.

The ongoing challenge of 
emerging infectious diseases

The 21st century has witnessed the emergence of several 
epidemic- and pandemic-level viral infections without 
even including the disturbing SARS-CoV-2 (COVID-19) 
pandemic [12]. Despite the lessons learned from the lethal 
1918 influenza outbreak, the world was ill-prepared for the 
SARS-CoV-2 outbreak given the prior warnings from the 
 SARS-CoV (2003) and Middle East respiratory syndrome 
coronavirus [MERS-CoV] (2012) epidemics, which clearly 
indicated the heightened risk of such strains flowing in bats 
[1, 12, 13]. Nevertheless, remarkable progress in basic viro-
logy, cell biology, biochemistry, and immunology research has 
accelerated the development of antiviral products and novel 
 vaccines, although the global distribution of these medical 
interventions remains a difficult task [14]. Concurrently, the 
swift spread of rumours and half-truths has created misper-
ception and eroded public assurance in these interventions, 
resulting in more harm than good [15]. The current SARS-
CoV-2  pandemic has underscored the necessity of investing 
in preparedness for global outbreaks and developing diagnos-
tic and intervention technologies [16]. Indeed, these technol-
ogies are essential in the development of therapeutics tailored 
to specific viral infections with high heterogeneity [1, 16].

Mesenchymal stem cells 
as a promising therapeutic 
approach

Mesenchymal stem cell (MSC) therapy offers a  favourable 
approach for mitigating the adverse effects of infectious 
viral diseases [7]. MSCs belong to a diverse subset of self- 
renewing progenitor cells that can be derived from many 
adult tissues, including umbilical cord blood, amniotic 
fluid, dental pulp, bone marrow, menstrual blood, foetal 
liver, Bichat’s fat pad, abdominal fat pad, and endometrium 
[1, 17]. This amazing versatility allows researchers and cli-
nicians to harness the regenerative potential of these cells, 
making MSCs a suitable candidate for treating a wide spec-
trum of diseases. Upon invasion of a virus, MSCs respond to 
damage-associated molecular patterns (DAMPs) and patho-
gen-associated molecular patterns (PAMPs) by transforming 
into a pro-inflammatory phenotype (MSC1), which produces 
inflammatory chemokines that attract circulating leuko-
cytes to the inflamed tissues. MSCs thereby regulate the 
activities of various immune cells involved in the antiviral 
response, such as dendritic cells (DCs), macrophages, nat-
ural killer (NK) cells, B lymphocytes, CD4+ T helper cells, 

and cytotoxic T lymphocytes (CTLs). Interferons (IFNs) 
produced by MSCs influence the cytotoxic functions of NK 
cells and CTLs, enhance the antigen-presenting capabilities 
of DCs and macrophages, regulate cytokine production in 
CD4+ T helper cells, and control antibody production in B 
cells, all of which are crucial for the effective elimination of 
virus-infected cells. During the tissue repair phase, MSCs 
adopt anti- inflammatory phenotypes and release a vari-
ety of immunoregulatory molecules, such as transforming 
growth factor-beta (TGF-β), indoleamine 2,3-dioxygenase 
(IDO), interleukin (IL)-10, interleukin-1 receptor antagonist 
(IL-1Ra), and prostaglandin E2 (PGE2). These molecules 
help suppress the overactivation of immune cells, thus pre-
venting the development of a cytokine storm and the subse-
quent harmful systemic inflammatory response.

Because of the strong immunomodulatory properties, 
MSCs are being extensively studied in numerous experi-
mental settings as a potential new therapeutic approach for 
 treating viral diseases. Furthermore, the insightful immu-
nomodulatory capabilities not only allow tissue repair but 
also offer exciting prospects for mitigating inflammatory 
responses and enhancing immune regulation, underscoring 
a focal role for MSCs in the future of regenerative medicine 
and disease management.

Understanding emerging viral 
zoonoses

Some viral zoonoses are categorized as “evolving infec-
tious diseases” due to the recent recognition and substantial 
changes in epidemiologic features and geographic distribu-
tion of these zoonoses [1, 18]. The primary basis for virus 
emergence is the increased interaction between viruses and 
wild animals, which results in the transmission of viruses 
from non-human hosts to new human hosts [19, 20]. Climate 
changes also contribute to the rise in viruses. Variants of 
newly evolving viruses can cause severe epidemics and 
appear in drug-resistant forms, which are referred to as 
“re-emerging viruses.” Indeed, the relationship between cli-
mate changes and the emergence of viruses is a subject of 
intense significance in the virology domain. Evidentiary 
strands have unravelled over the years, underscoring the 
unquestionable influence of shifting environmental dynam-
ics on the viral landscape. One cannot overlook the research 
that elucidates how alterations in temperature, humidity, and 
precipitation patterns can provide fertile ground for the resur-
gence of dormant viruses or the amplification of existing 
viruses. Furthermore, the ramifications extend beyond mere 
viral reactivation because these climatic variations can also 
 catalyse the evolution of viral strains into hitherto unseen var-
iants. Such variants with genetic novelties possess an alarm-
ing potential to unleash severe epidemics. This finding was 
exemplified by the emergence of the SARS-CoV-2 virus pan-
demic, which is believed to have zoonotic origins influenced 
by changing environmental conditions that brought humans 
into closer contact with animal reservoirs [1]. The spectre 
of drug-resistant “re-emerging viruses” looms ominously on 
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the horizon as well and the selective pressures exerted by a 
changing climate can hasten the development of resistance 
mechanisms in viruses against antiviral drugs. The ongoing 
battle against antibiotic-resistant bacteria highlights the pos-
sibility that a similar scenario is plausible in the virosphere, 
which has been further substantiated by the growing body of 
evidence documenting the evolution of drug- resistant strains 
of HIV, and influenza and hepatitis viruses [1].

Versatility of stem cell therapy

Stem cell therapy has tremendous potential for treating a 
wide range of human diseases, including neurodegenerative 
disorders, amyotrophic lateral sclerosis, Alzheimer’s dis-
ease, Parkinson’s disease, autoimmune diseases, rheumatoid 
arthritis, type 1 diabetes mellitus, cardiovascular diseases, 
and cancers [21, 22]. A major increase in registered clinical 
studies using MSCs has occurred over the past 10 years. East 
Asia, especially China, has been leading this trend, followed 
by North America and Europe [6]. The distinctive feature of 
stem cells is in the permanent self-renewal and ability to dif-
ferentiate into specialized adult cell types. MSCs can be cat-
egorized as pluripotent stem cells, which have the capacity to 
develop into any cell type, and multipotent stem cells, which 
have limitations in differentiation potential [23]. The ease 
with which MSCs are isolated from various tissues and the 
capacity to differentiate into multiple lineages make MSCs a 
smart option for treating various clinical conditions, includ-
ing viral infections [24]. The vast stem cell therapeutic array 
is a testament to the potential stem cells hold in the field 
of regenerative medicine. Pluripotent stem cells, represented 
by embryonic stem cells and induced pluripotent stem cells, 
constitute the pinnacle of versatility within this spectrum 
because pluripotent stem cells possess the remarkable ability 
to criss-cross the developmental continuum, following the 
trajectory of embryogenesis itself [23]. With the potential to 
regenerate damaged or degenerated tissues and organs, pluri-
potent stem cells have ignited an enthusiasm for scientific 
exploration and ventured into uncharted territories of curing 
previously intractable diseases. Moreover, pluripotent stem 
cells offer a glimmer of hope to individuals afflicted by a 
myriad of medical conditions, including neurodegenerative 
disorders and heart diseases. In contrast, multipotent stem 
cells, although somewhat less all-inclusive in differentiation 
capabilities when juxtaposed with pluripotent counterparts, 
remain an option in the biomedical field. These cells, found 
in various tissues, such as bone marrow, adipose tissue, and 
the umbilical cord, harbour the inherent potential to trans-
form into a more limited repertoire of cell types, typically 
within a specific tissue or organ system. The importance of 
this differentiation potential should not be underestimated 
because multipotent stem cells are endowed with the capac-
ity to replenish and regenerate tissues, thereby having pivotal 
roles in maintaining homeostasis and repairing local inju-
ries [23]. Clinically, multipotent stem cells have shown great 
promise in the domain of tissue engineering and regenerative 
therapies and offer practical solutions for ailments, such as 
orthopaedic injuries and haematologic disorders.

Figure 1 The figure depicts MSCs modulating immune cells 
through direct contact and secreted factors. MSCs influence T cells 
by secreting molecules, such as IFN-γ, IDO, PGE2, various inter-
leukins, PD-L1, PD-L2, and miRNAs. For B cells, MSCs release 
PGE2 and VEGF to aid in proliferation and antibody production. NK 
cells are regulated by MSCs through factors, such as IFN-γ, IDO, 
PGE2,  TNF-α, IL-2, IL-12, and IL-18, to enhance cytotoxicity. MSCs 
also modulate macrophages, dendritic cells (DCs), monocytes, and 
neutrophils with factors, including PGE2, IDO, IL-1β, IL-6, IL-8, IL-10, 
TGF-β, and miRNAs, which balance immune responses and prevent 
excessive inflammation. Source [26].

MSC mechanisms of action in 
viral infections

Human MSCs are non-hematopoietic stem cells identified 
by unique cell surface markers and differentiation clus-
ters (CD29, CD44, CD73, and CD90) [25]. These cells 
can develop into three lineages, as follows: endodermal 
(hepatocytes); mesodermal (osteocytes, adipocytes, and 
chondrocytes); and ectodermal (neurocytes). MSCs have 
a crucial role in the innate and adaptive immune systems. 
MSCs exert immunomodulatory effects primarily through 
interactions with immune cells via direct cell-to-cell con-
tact and the release of paracrine factors (Figure 1) [26]. 
MSCs interact with various immune cells, including T cells, 
B cells, NK cells, and macrophages [27]. In vitro studies 
have demonstrated that MSCs suppress naive and memory 
T-cell responses by interacting with antigen-presenting cells 
(APCs) [27]. This interaction involves the upregulation of 
intercellular adhesion molecule (ICAM)-) and vascular 
cell adhesion molecule (VCAM)-1, which are essential for 
T-cell activation and recruitment of leukocytes (WBCs) 
to sites of inflammation [28]. Further research has shown 
that co-culturing bone marrow-derived (BM)-MSCs with 
activated T cells induces lymphocytes that produce IL-17A 
[29]. MSCs co-cultured with CD4+ T cells have been shown 
to activate the Notch1/forkhead box P3 (FOXP3) pathway, 
increasing the percentage of CD4+CD25+FOXP3+ reg-
ulatory T cells (Tregs) [30]. Knockdown of Galectin-1, a 
protein abundantly expressed in MSCs that affects T lym-
phocytes and cytokine secretion, results in the loss of MSC 
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immunomodulatory properties and restores CD4+ and CD8+ 
T-cell proliferation [31]. BM-MSCs express high levels of 
Toll-like receptors (TLRs) 3 and 4, which are responsible 
for nuclear factor kappa B (NF-κB) activity and cytokine 
production. Expression of these TLRs in MSCs can restore 
efficient T-cell responses during infection [26].

Human placenta MSCs (PMSCs) have been shown to 
express high levels of programmed-death ligand (PD)-1 
and -2, which inhibit T-cell proliferation by arresting the 
cell cycle [32]. In vivo mouse models have provided fur-
ther insight into immune regulation between MSCs and T 
cells. For example, in a syngeneic orthotopic mouse model 
of ovarian cancer, compact bone (CB)-derived MSCs have 
shown anti-tumor effects when combined with a fusion pro-
tein (VIC-008) that activates CD4+ and CD8+ T cells and 
inhibits Tregs in the tumor microenvironment (TME) [33]. 
In foetal abortion models, MSCs have enhanced the suppres-
sive regulation of T cells and macrophages [34]. Conversely, 
MSCs primed by activated T cells derived from interfer-
on-gamma knockout (IFN-γ −/−) mice exhibit a significantly 
reduced ability to suppress T-cell proliferation, which high-
lights the importance of cell-to-cell contact in MSC immu-
nosuppressive function [35].

In addition to T cells, MSCs also impact B cells through 
direct contact. Adipose (A)-derived MSCs have been shown 
to enhance the survival of quiescent B cells via contact- 
dependent mechanisms and facilitate B-cell differentiation 
independently of T cells [36]. A-MSCs also inhibit caspase 
3-mediated apoptosis of B cells by upregulating vascular 
endothelial growth factor (VEGF) [37] and inhibit B-cell 
proliferation by blocking the cell cycle in the G0/G1 phase 
through activation of the p38 mitogen-activated protein 
kinase (MAPK) pathway [38]. MSCs also interact with 
cells of the innate immune system through direct contact. 
Tracking studies have revealed that infused umbilical cord 
(UC)-derived MSCs briefly reside in the lungs before being 
rapidly phagocytosed by monocytes, which then migrate to 
other body sites. This phagocytosis induces phenotypic and 
functional changes in monocytes, which subsequently modu-
late adaptive immune cells and have a crucial role in mediat-
ing the immunomodulatory effects of MSCs [26]. Co-culture 
studies with different NK cell lines (KHYG-1 and NK-92) 
have shown differential crosstalk between MSCs and cyto-
toxic NK cells with granule polarization either suppressed 
or induced [39]. A-MSCs can also switch activated M1-like 
inflammatory macrophages to an M2-like phenotype via 
PGE2 and prevent neutrophil death through an ICAM-1-
dependent mechanism, thereby exerting tissue-protective 
effects [26, 40].

MSCs also exert immunomodulatory properties through 
secretion of multifunctional molecules via paracrine mech-
anisms [41]. This secretome includes a diverse array of 
cytokines, growth factors, and chemokines, such as TGF-
β1, tumor necrosis factor-alpha (TNF-α), PGE2, inter-
feron-gamma (IFN-γ), hepatocyte growth factor (HGF), 
fibroblast growth factor (FGF), IDO, and nitric oxide (NO) 
[26]. These paracrine factors are encapsulated in extracel-
lular vesicles (EVs) secreted by cells, which are classified 
into exosomes, micro-vesicles (MVs), and apoptotic bod-
ies based on size and origin [42, 43]. MSCs influence the 

adaptive immune system, particularly T cells, through par-
acrine secretion. MSCs inhibit T helper (Th)17 cell differ-
entiation by inducing IL-10 and PGE2 production while 
inhibiting IL-17, IL-22, and IFN-γ [43]. However, the 
mechanisms underlying MSC-Th17 interactions are not 
fully understood. In vitro and in vivo studies using IL-25 
knockdown have shown that MSCs suppress Th17 responses 
through the IL-25/STAT3/PD-L1 axis [44]. MSC-secreted 
IDO induces Tregs, which are responsible for kidney allo-
graft tolerance [45]. Additionally, exosomes derived from 
BM-MSCs transfected with plasmids encoding shFas and 
anti-miR-375 and co-cultured with peripheral blood mono-
nuclear cells (PBMCs) suppress immune responses in immu-
nodeficient mouse models by inhibiting PBMC proliferation 
and enhancing Treg function [46]. MSCs also secrete PD-1 
ligands, including PD-L1 and PD-L2, to exert immunosup-
pressive effects directly on T-cell behaviour by suppressing 
CD4+ T-cell activation [47].

Within the innate immune system, MSCs interact with 
NK cells by inhibiting IL-2-induced NK cell proliferation 
[48] and modulating cytotoxic activity or cytokine produc-
tion via IDO and PGE2 secretion [49]. MSCs enhance the 
ability of IL-12- and IL-18-stimulated NK cells to secrete 
IFN-γ, potentially improving infection defence at injury sites 
and influencing tissue regeneration [50]. MSC-derived IL-6 
protects neutrophils from apoptosis, preserving neutrophils 
within the bone marrow niche [51]. MSC-derived exosomes 
augment neutrophil viability, while MSC-conditioned media 
(CM) increase neutrophil function, demonstrating the useful-
ness of MSC-derived exosomes and CM in enhancing immu-
nity by modulating neutrophils [52]. Lipopolysaccharide 
(LPS)-stimulated MSCs enhance neutrophil anti- microbial 
functions by releasing IL-8 and macrophage migration 
inhibitory factor (MIF), which contributes to the resolution 
of infections and inflammation [53]. MSC-EVs also have a 
crucial role in macrophage polarization, enhancing the for-
mation of anti-inflammatory M2 macrophages over M1-like 
inflammatory macrophages by downregulating IL-23 and 
IL-22 [54]. BM-MSCs activated by LPS or TNF-α repro-
gram macrophages by releasing PGE2, which acts on mac-
rophages through PG EP2 and EP4 receptors [55]. Human 
PMSCs transform macrophages from an inflammatory M1 
into an anti-inflammatory M2 phenotype via soluble IL-10, 
IL-1β, IL-12, MIP-1α, and glucocorticoid and progesterone 
receptors [56].

Importantly, IFN-stimulated gene (ISG) expression 
equips these cells with resistance to viral entrance by aim-
ing at various stages of the viral lifecycle, including genome 
integration, transcription, and translation [1, 57]. Notable 
ISGs include PMAIP1, ISG15, IFI6, IFITM3, SAT1, p21/
CDKN1A, SERPINE1, and CCL2 [57]. ISGs have been 
shown to suppress the infection of various viruses in vitro 
and some directly affect the susceptibility of specific viruses 
[58]. MSCs regulate the host tissue microenvironment by 
modulating immune responses, inhibiting NK and T cells, 
and downregulating inflammatory cytokines while upreg-
ulating regulatory cytokines [22]. TLRs, especially TLR3 
and TLR4 on the surface of MSCs, have a crucial role in 
immunomodulatory action in response to RNA viruses, 
thereby preventing a cytokine storm [59, 60]. MSCs release 
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anti-inflammatory chemicals, such as NO, PGE2, TGF-
β1, HGF, IDO, and IL-10 in response to this hyperimmune 
response [61, 62].

Efficacy of MSCs in treating 
COVID-19

Clinical trials have recognised the safety and efficacy of 
MSCs in the treatment of COVID-19, which demonstrated 
that MSCs possess the remarkable ability to mitigate 
inflammation, release protective substances, offer antioxi-
dant effects, reduce cell mortality, and enhance the overall 
immune response. As of June 2022, 104 clinical trials involv-
ing stem cells were registered and documented for COVID-
19 therapy. Several studies have validated and shown that 
MSC therapy considerably lowers the incidence, frequency, 
and mortality of critically ill patients [63]. For example, Shu 
et al. [63] reported no mortality in the MSC therapy group, 
while Xu et al. [64] found significantly higher survival rates 
in MSC-treated patients compared to those receiving stand-
ard treatment. The harm inflicted on the respiratory system 
by COVID-19 arises from a combination of the inherent 
pathogenicity of the virus and the immune reaction to virus. 
A study piloted by Shi et al. [65] discovered that COVID-19-
infected patients exhibit elevated levels of proinflammatory 
cytokines [65]. However, patients who required admission to 
intensive care units (ICUs) displayed a decrease in the levels 
of MCP1, MIP-1α, GCSF, IP10, and TNF-α when compared 
to non-admitted individuals. This shift in cytokine levels 
points to the occurrence of a cytokine storm within the lungs 
of infected individuals. Such alterations in cytokine levels 
have been linked to a cascade of immune responses and 
extensive lung damage following pulmonary inflammation. 
This combined effect ultimately contributes to a heightened 
risk of mortality. Patients treated with MSCs exhibit signif-
icantly improved 28-day survival rates and a reduced likeli-
hood of death compared to the control group [66]. Moreover, 
MSC therapy accelerates COVID-19 recovery and improves 
pulmonary function [65]. After MSC delivery, several ana-
lytical parameters reverted to normal, including C-reactive 
protein (CRP), alanine aminotransferase (ALT), creatinine, 
and serum ferritin (SF) levels, as well as platelet counts [67]. 
MSCs improved the healing of other organs, such as the 
liver and kidneys, in addition to reducing pulmonary symp-
toms [67]. MSCs have a vital role in mitigating lung injuries 
caused by Coronaviridae family members by targeting the 
cytokine storm and promoting lung tissue repair and resto-
ration [62].

Influenza viruses and the 
potential of MSC therapy

Influenza viruses are frequent culprits leading to pandem-
ics and epidemics, with the emergence of H1N1 influenza 

in 1918 setting a historical precedent [68]. The 21st century 
has witnessed sporadic outbreaks of avian influenza virus 
(AIV) subtypes, such as H5N1, H7N9, and H9N2, which 
have caused high mortality rates in humans [69]. In spite of 
antiviral drugs as the primary therapeutic approach against 
influenza-induced manifestations, antiviral drugs often fail 
to repair damaged lung tissues, which has led researchers 
to explore alternative treatments involving human bone mar-
row-derived mesenchymal stromal cells (BM-MSCs) [70]. 
These cells have demonstrated promise in countering the 
impact of H5N1 virus infection on human alveolar epithe-
lial cells. Specifically, BM-MSCs contribute to a reduction 
in enhanced alveolar protein permeability (APP) and an ele-
vation in alveolar fluid clearance (AFC). The mechanisms 
underlying this process involve the secretion of human kerat-
inocyte growth factor (KGF) and angiopoietin (Ang)-1 by 
BM-MSCs and in vivo experiments have underscored the 
significant anti-inflammatory properties of BM-MSCs, high-
lighting the ability of BM-MSCs to increase the population of 
M2 macrophages [1]. These specialized immune cells have 
a vital role in producing various cytokines and chemokines, 
including IL-1β, IL-4, IL-6, IL-8, and IL-17 [1]. MSCs have 
also shown promise in ameliorating lung injury caused by 
influenza viruses by restoring alveolar epithelial cell func-
tion, decreasing inflammation, and controlling the immune 
response [71, 72]. Furthermore, MSCs have been shown to 
inhibit the release of proinflammatory cytokines and multi-
plication of virus-specific CD8 + T cells, ultimately improv-
ing survival of influenza virus patients [73].

Comparison of efficacy of 
MSCs in treating COVID-19 
versus influenza

Numerous clinical trials have demonstrated the promis-
ing potential of MSCs in addressing COVID-19 and its 
complications (Table 1) [74]. Over 100 registered clini-
cal trials have explored MSCs for COVID-19 treatment, 
with many focusing on severely ill patients [75]. A phase 
I clinical study confirmed the safety of high and low doses 
of DW-MSC infusion in non-severe COVID-19 patients 
[76]. However, to firmly establish the therapeutic efficacy 
of MSCs, large-scale randomized controlled trials are nec-
essary. Shu et  al. [63] reported that patients treated with 
UC-MSCs had improvement in clinical symptoms, such as 
weakness, fatigue, shortness of breath, and the oxygena-
tion index, within 3 days of treatment. Prenatal MSCs from 
UC-MSCs or placental (PL-MSC) tissues have been used 
in critically ill COVID-19 patients with ARDS, resulting 
in reduced dyspnoea and an increased SpO

2
 within 2–4 d 

after an initial infusion in 64% of the patients [74, 67]. A 
multicentre randomized, double-blind trial revealed a signif-
icant increase in the PaO

2
:FiO

2
 ratio in the UC-MSC group 

compared to the placebo group in COVID-19-associated 
acute respiratory distress syndrome (ARDS) [77]. A clini-
cal trial using human menstrual blood-derived mesenchy-
mal stromal cells for severe and critically ill COVID-19 
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patients showed significant improvement in dyspnoea, the 
SpO

2
, and the PaO

2
, and notably lower mortality in the MSC 

group compared to the control group [74, 64]. Farkhad et al. 
[78] found that mesenchymal stromal cell therapy improved 
the SPO

2
:FIO

2
 ratio in COVID-19-induced ARDS patients. 

Lanzoni et  al. [66] reported improved patient survival and 
faster recovery after two rounds of intravenous allogeneic 
UC-MSC administration in ARDS patients. In a phase I/II 
study, survival rates were higher in the MSC group 28 and 
60 d post BM-MSC treatment [79]. An Indonesian ran-
domized controlled trial showed a survival rate 2.5-fold 
higher in the UC-MSC group than the control group among 
critically ill COVID-19 patients [80]. Fathi-Kazerooni et al. 
[81] reported a significantly higher survival rate in severe 
COVID-19 patients treated with human mesenchymal stro-
mal cells compared to placebo treatment.

Many inflammatory biomarkers and cytokines are closely 
associated with severe and critical COVID-19. Meng et al. 
[82] reported improved PaO

2
:FiO

2
 ratios and a decline in 

inflammatory cytokines, such as IL-6, IFN-γ, TNF-α, MCP-
1, IP-10, IL-22, IL-1RA, IL-18, IL-8, and MIP-1, after 
three rounds of UC-MSC treatment. Fathi-Kazerooni et al. 
[81] reported notably lower CRP levels on day 5 in severe 
COVID-19 patients treated with human mesenchymal stro-
mal cells compared to placebo, with significant reductions in 
CRP, LDH, D-dimer, and SE levels in the treatment group. 
Sadeghi et  al. [83] demonstrated significant reductions in 
IL-6 and CRP levels in COVID-19-induced ARDS patients 
treated with placenta-derived decidual stromal cells. A pilot 
study showed that aerosol inhalation of exosomes from 
human adipose-derived MSCs (haMSC-Exos) in COVID-19 
patients increased lymphocyte counts and decreased CRP, 
LDH, and IL-6 levels [74, 84].

In COVID-19 patients, common CT findings include 
ground-glass opacification, infiltration, consolidation, pneu-
monia, and emphysematous changes [85]. Many clinical tri-
als have shown that MSC treatment improves lung changes 
in COVID-19 patients. Shu et al. [63] reported faster lung 
inflammation absorption on CT imaging in severe COVID-
19 patients treated with UC-MSC compared to the control 
group. A case series trial showed significant recovery indi-
cations, such as reduced ground-glass opacities or consoli-
dations, in COVID-19-induced ARDS patients [74]. Meng 
et al. [82] observed complete fading of lung lesions within 
2 weeks in moderate COVID-19 patients after a UC-MSC 
transfusion. A phase 2 randomized, double-blind, place-
bo-controlled trial showed a significant reduction in solid 
component lesion volume proportions in the UC-MSC 
group compared to the placebo group in COVID-19-induced 
ARDS patients [74]. A randomized clinical trial showed a 
decrease in lung damage extent 4 months after 3 rounds of a 
mesenchymal stromal cell infusion in critically ill COVID-
19 patients [86]. A pilot study reported varying degrees of 
pulmonary lesion resolution after aerosol inhalation of haM-
SC-Exos in COVID-19 patients [84]. Xu et al. [64] detected 
a significant difference in the improvement rate of chest CT 
findings between experimental and control groups in the 
first month following MSC infusion in severe and critically 
ill COVID-19 patients. Fathi-Kazerooni et al. [81] demon-
strated significant pulmonary involvement improvement in N
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severe COVID-19 patients treated with human mesenchymal 
stromal cells secretome. Sadeghi et  al. [83] showed com-
plete disappearance of pulmonary infiltrates in COVID-19-
induced ARDS patients treated with placenta-derived decid-
ual stromal cells.

In the case of influenza virus-induced lung injury, despite 
substantial evidence indicating the beneficial effects of MSC 
administration in preclinical models, some studies chal-
lenge the efficacy of MSCs as a therapeutic or prophylac-
tic option for reducing pulmonary inflammation (Table 2) 
[87]. Research conducted by Darwish et al. [88] showed that 
MSC therapy does not lead to improved outcomes in severe 
experimental influenza. Similarly, Gotts et al. [89] reported 
no significant beneficial effects of MSCs on weight loss, sur-
vival, or lung injury. These findings highlight the importance 
of considering the timing, dose, route, and frequency of 
MSC administration when evaluating treatment efficiency. 
One potential reason for the observed lack of efficacy is that 
MSCs may have difficulty accessing the injured epithelial 
barrier and could potentially become infected by the influ-
enza virus. Moreover, the short duration of preclinical mod-
els limits the ability to thoroughly investigate lung recovery 
processes following influenza-induced injury [88, 89].

Nevertheless, these experimental findings do not entirely 
rule out the potential of MSC therapy to contribute to long-
term lung repair and the restoration of full lung function 
post-influenza infection. In addition to exogenously admin-
istered MSCs, tissue-resident MSCs have a significant role 
in tissue repair and regeneration [87]. Adult pulmonary tis-
sue-resident MSCs exhibit similar phenotypes and functions 
to BM-MSCs [90]. Although few studies have examined the 
status of resident lung MSCs after virus-induced lung injury, 
there is some evidence suggesting that altered lung MSC 
function may have a role in bleomycin-induced pulmonary 
arterial hypertension (PAH). In mouse models, bleomycin 
treatment has been shown to lead to the loss of endogenous 
lung MSCs, which are critical for modulating the severity of 
the injury through an influence on the T cell response [91]. 
Transplantation of isolated lung MSCs has been shown to 
mitigate bleomycin-induced PAH, reduce the number of 
inflammatory cells, and inhibit T cell proliferation. These 
findings imply that lung MSCs are crucial for maintaining 
lung integrity post-injury, but the loss compromises this 
protective function [92]. Ye et  al. [93] demonstrated that 
BM-MSCs influence endogenous lung stem cells (club cells) 
through the release of cytokines and vesicles, activating the 
Notch signalling pathway and affecting the proliferation of 
club cells in phosgene-induced lung injury. Another study 

showed that BM-MSCs protect against LPS-induced lung 
injury by restoring alveolar bioenergetics through Cx43-
dependent alveolar attachment and mitochondrial transfer 
[94]. These findings suggest that transplanted exogenous 
MSCs may create an important niche for various types of 
lung cells via different pathways.

The recent emergence of SARS-CoV-2, which has caused 
an outbreak of atypical viral pneumonia in patients, under-
scores the global public health risks posed by coronaviruses. 
Despite multiple occurrences of such viruses attacking 
humans, there are still limited specific strategies to address 
these virus-induced injuries [87]. Stem cells, including 
MSCs and LSCs, offer a potential therapeutic approach for 
treating virus-induced lung injuries. This potential has been 
explored from the perspectives of immune regulation and 
lung repair, although challenges remain. The number of clin-
ical trials investigating stem cell therapy for virus-induced 
lung injury has been gradually increasing. Looking ahead, 
there is an expectation that stem cell therapy will become a 
viable treatment option for virus-induced lung injury.

Challenges and future 
directions in MSC therapy

The potential of MSCs in various pre-clinical disease mod-
els is well-documented, yet the exact mechanisms underlying 
many observed effects remain elusive [95, 96]. Over the past 
10 years, clinical trials for MSC-based therapies have been 
initiated for numerous medical conditions [97]. These clin-
ical studies have consistently demonstrated that MSC appli-
cations are safe and feasible, although proving their efficacy 
has often been challenging as therapies progressed through 
clinical development stages. This challenge is reflected in the 
absence of MSC-based products in the European market, with 
only a few such products approved globally. South Korea is 
at the forefront, having registered two MSC products, with 
the first authorization granted in 2011 [95]. This notewor-
thy MSC approval is possibly due to the South Korean reg-
ulatory framework, which permits conditional marketing 
approval, allowing commercial sales under specific condi-
tions while pivotal trials are ongoing. The European Union 
has a similar procedure under Regulation (EC) No 507/2006, 
although there are differences in the regulatory systems. In 
North America, Health Canada’s Notice of Compliance with 
Conditions (NOC/c) allows for conditional marketing of 
MSC products, which is similar to the South Korean approach 

Table 2 Clinical Trials Exploring the Potential of MSC Infusions in Influenza Patients

No  Study Title  Trial ID NO  Phase  Indications  Source of MSCs  Country
1  Clinical study of mesenchymal stem 

cell treatment for acute respiratory 
distress syndrome induced by 
epidemic influenza A (H7N9) infection: 
A hint for COVID-19 treatment

 ChiCTR-OCC-15006355  Completed  ARDS in 
Influenza

 Menstrual blood 
derived MSCs

 China

2  Using human menstrual blood cells 
to treat acute lung injury caused by 
H7N9 bird flu virus infection

 NCT02095444  Unknown  No result 
posted

 Menstrual blood 
stem cells

 China
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[95]. In the United States, the Food and Drug Administration 
(FDA) has stringent requirements for MSC-based therapies, 
requiring extensive pre-clinical and clinical data to demon-
strate safety and efficacy [95]. Many studies involving 
MSC clinical applications often lack pre-clinical screening 
because only one active substance candidate is typically used. 
Evaluating the rationale behind using specific MSC cultures 
is essential if the clinical application does not require the 
same function as in the tissue of origin. MSC trials frequently 
aim to promote tissue regeneration or immunomodulation. 
Incorporating pre-clinical screening and selection, a standard 
part of conventional medicinal product development, should 
also apply to cell therapy. Techniques, such as modifying 
MSC populations with small compounds followed by expres-
sion or secretome profile screening, genetic modifications 
to enhance therapeutic effects, or comparing subpopulations 
from different origins, could be considered to improve study 
design and efficacy [98, 99].

Though costly and perhaps less attractive for academic 
research, pre-clinical screening can be a cost-effective 
improvement for discovering new MSC therapy candidates, 
which would offer benefits, such as novel intellectual prop-
erty acquisition. MSC product developers should start with 
the EMA scientific guidelines detailing quality, safety, effi-
cacy, and pharmacovigilance for Cell Therapy Medicinal 
Products (CTMPs). Despite these guidelines, the variety of 
cell therapy products means a risk-based approach is neces-
sary for development and evaluation. Directive 2001/83/EC 
encourages a risk-based approach for ATMPs to determine 
the extent of quality, non-clinical, and clinical data required 
for marketing authorization applications [95]. The risk anal-
ysis must cover the entire development process with relevant 
biological parameters, including cell viability and biodis-
tribution investigation, in place of conventional pharma-
cologic tests. Given the lack of relevant animal models for 
cell therapy products, the regulatory evaluation will likely 
follow a risk-based approach until more products reach the 
market. Understanding these ethical issues and regulatory 
frameworks, which differ globally, is crucial for advancing 
MSC-based therapies. Solutions, such as adaptive licensing 
and a risk-based approach, could improve the efficiency and 
accessibility of these promising treatments. Nevertheless, 
the prolonged culture of stem cells may lead to chromosomal 
abnormalities and epigenetic changes, necessitating adher-
ence to “Good Manufacturing Practices” (GMP), in which 
the standards for sustainable cell production can compromise 
the immune response and increase the susceptibility to infec-
tions [100, 101]. Moreover, concerns have arisen regarding 
the role of MSCs in promoting viral transmission and tumor 
growth [102, 103]. Therefore, it is imperative to homoge-
nise therapeutic protocols, ex vivo preparations, and MSC 
isolation methods to enhance clinical outcomes. To address 
these ethical and regulatory challenges, a harmonized global 
regulatory framework could be developed incorporating 
best practices from different regions. Adaptive licensing, 
which allows for conditional approvals based on iterative 
data gathering and regulatory re-evaluation could be widely 
adopted among regulatory boards because this approach 
balances the need for timely access to therapies with the 
requirement for thorough safety and efficacy evaluations. 

Enhancing international collaboration and sharing of clinical 
data could also improve the regulatory process, ensuring that 
MSC-based therapies meet high standards of safety and effi-
cacy, while accelerating the availability to patients in need. 
Establishing clear guidelines for the ethical sourcing and use 
of MSCs, coupled with robust patient consent processes, 
can address ethical concerns and build public trust in these 
therapies.

Conclusion and future 
directions

MSCs offer a multitude of advantages that make them 
attractive for therapeutic applications. First, MSCs can be 
 harvested from various tissues, including BM, which is con-
sidered the most preferable source. MSCs can also be iso-
lated from peripheral blood, AD tissues, oral tissues, and 
menstrual blood. Neonatal birth-related tissues, such as the 
PL, UC, Wharton’s jelly, and amniotic membrane or fluid, 
are effective sources of MSCs [104]. Once isolated, MSCs 
can be preserved for future therapeutic use. Second, MSCs 
are multipotent stem cells that possess the ability to self- 
renew and differentiate into multiple specialized cell types 
[104]. Third, MSCs can be expanded to large quantities 
in a relatively short time, allowing MSCs to be stored for 
repeated therapeutic interventions [104]. Importantly, clini-
cal studies involving MSCs have not reported severe adverse 
reactions to allogeneic MSCs to date. Lastly, various clini-
cal trials have confirmed the safety of MSCs in therapeutic 
applications [105].

Using MSCs for COVID-19 treatment presents several 
challenges that must be addressed to ensure efficacy and 
safety. Because MSC therapy is classified under stem cell 
treatments, it is imperative to adhere to the guidelines set by 
the International Society for Stem Cell Research (ISSCR). 
The ISSCR “Guidelines for the Clinical Translation of Stem 
Cells” outline the criteria for advancing stem cell-based 
treatments to ensure that the therapeutic potential is real-
ized [104]. Key challenges include optimizing the expansion 
period, determining the required cell dose, and addressing 
issues related to cell culture and exposure to animal-derived 
products, which can significantly impact safety and efficacy. 
Long-term in vitro culture can lead to a loss of essential stem 
cell characteristics, such as stemness and plasticity, or even 
induce malignant transformation [106]. Another significant 
challenge is determining patient eligibility for MSC-based 
treatments, particularly for those with chronic conditions, 
cancer, autoimmune diseases, allergies, or those who are 
pregnant or breastfeeding. Many clinical trials using MSCs 
or derived exosomes for COVID-19 treatment are still in 
phase I/II trials and have yielded unsatisfactory results 
[104]. It is crucial to have robust evidence and verification of 
MSC safety and efficacy, which involves assessing potential 
adverse events and long-term consequences [107]. Another 
major challenge is the significant heterogeneity within MSC 
populations, which may contribute to inconsistent research 
findings. Moreover, recent studies indicate that MSCs might 
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not be as immunologically inert as previously believed [7]. 
This discovery necessitates further investigation to identify 
and isolate the “immune privileged” subpopulations within 
the diverse MSC pool for more reliable clinical applica-
tions. An alternative strategy to circumvent these issues is to 
explore cell-free therapies, such as MSC-derived exosomes 
[7]. These exosomes could offer significant advantages over 
MSCs, especially because the therapeutic effects of MSCs 
are largely attributed to paracrine activity. Given the limited 
research on MSC applications in virus-related diseases and 
the fact that most studies are still in early clinical phases, it 
is premature to draw definitive conclusions about efficacy. 
Therefore, it is essential to conduct well-designed, rand-
omized controlled trials with larger sample sizes to thor-
oughly assess the safety and therapeutic effectiveness of 
MSC treatments over both short- and long-term periods [7].

Although the BM is the most common source of MSCs, 
the harvesting process is invasive and the yield is limited. 
ARDS can impair the immunomodulatory efficacy of 
BM-MSCs, complicating use for autologous transplanta-
tion [104]. While studies have explored the therapeutic 

efficacy of MSCs from other sources in ARDS, it remains 
unclear which source provides the best outcomes. 
Determining the optimal cell injection dose is critical 
for clinical MSC treatments. Emerging and re-emerging 
infectious diseases have continued to challenge global 
healthcare systems, emphasizing the urgent need for pio-
neering therapeutic methods. Stem cell therapy, particu-
larly with MSCs, holds immense promise in moderating 
the impact of these viral infections by exerting antiviral, 
anti-inflammatory, immunomodulatory, anti-fibrotic, 
anti-apoptotic, and angiogenic effects. Future clinical 
trials should focus on understanding these characteris-
tics of stem cells in infectious environments and explore 
innate recognition mechanisms to enhance their antiviral 
potential. Standardization of MSC protocols and quality 
improvements are essential for addressing the challenges 
associated with graft rejection, graft-versus-host disease, 
and delayed immune reconstitution. The interface between 
viruses and stem cells thus remains a dynamic field ripe 
for further exploration, offering hope in the ongoing scuf-
fle against infectious diseases.
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