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Introduction

The tumor microenvironment (TME) is a 
crucial factor that influences the survival, 
invasion, and metastasis of tumor cells. 
The TME consists of various components, 
including immune cells, stromal cells, 
blood vessels, and the extracellular matrix 
[ECM] [1]. The TME has a significant role 
in promoting cancer growth, metastasis, 
and resistance to treatment [2]. The dense 
ECM structure of the tumor tissue, along 
with the compressive stress on blood ves-
sels, lymphatic vessels, and other tissues, 
impede drug delivery [3, 4]. Additionally, 
the biophysical structure of the TME can 
hinder immunotherapy-related antibodies 
or activate downstream signaling through 
mechano-transduction, leading to upreg-
ulation of programmed cell death ligand 
1 (PD-L1) expression and anti-apoptotic 
molecules, the massive secretion of immu-
nosuppressive factors, and abnormal func-
tion of anti-tumor immune cells. These 
effects act synergistically to result in resist-
ance to immunotherapy [5].

In conventional tumor treatment regi-
mens, chemotherapeutic agents have low 
specificity [6, 7]. As a systemic therapy, 

the higher the dose of the chemotherapeu-
tic drug, the greater the side effects [6, 7]. 
Physical stimulation, such as ionizing radi-
ation, light, electricity, magnetic field, and 
ultrasound [8, 9], offer significant advan-
tages in the treatment of TME limitations. 
Specifically, radiation or heat can break 
the physical barrier of the TME, which 
makes it easier for drugs to accumulate at 
the tumor site by modulating the structure 
of the TME and lowering the interstitial 
fluid pressure (IFP), thus reducing seri-
ous side effects and improving the efficacy 
of treatment [10]. In addition, emerging 
tumor treatments, such as cancer immu-
notherapy (CIT), have limited effects due 
to immune tolerance associated with the 
TME. Currently, the most successful and 
widely used immune checkpoint in clin-
ical practice is PD-L1/programmed cell 
death protein 1 (PD-1). However, PD-L1/
PD-1 monotherapy only has an effective 
rate of 10%–40% due to primary resistance 
[5]. In contrast, combining immunother-
apy with physical stimulation therapies, 
such as radiation, photodynamic therapy 
(PDT), photothermal therapy (PTT), and 
sonodynamic therapy (SDT), significantly 
improves the efficacy of immunotherapy 
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Abstract

The tumor microenvironment (TME) has a crucial role in tumor development, metastasis, and recurrence. 
The chaotic and complex physical structure of the TME not only limits drug delivery but also contributes to 
the development of resistance to immunotherapy. Breaking the physical barrier limitation of the TME could 
further optimize the existing tumor treatment protocols. Physical stimulation, such as ionizing radiation, 
light, electricity, magnetic field, and ultrasound, modulate the TME by altering tumor vasculature, remod-
eling the extracellular matrix, and activating immune responses to achieve the goal of adjuvant to other 
tumor therapeutic approaches. In addition to adjuvant chemotherapy and immunotherapy, these physical 
stimulations also enhance the efficacy of other physical treatments for cancer. In this review we discuss the 
structural characteristics of TME and focus on the modulation of TME by different physical stimulations. We 
also analyze the adjuvant effects of these stimulations on other tumor therapies.
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[11]. All of the combined therapeutic approaches demon-
strate the advantages of physical stimulation in modulating 
the TME for drug delivery and adjuvant tumor therapy and 
show the future promise of the multidisciplinary intersection 
in medicine. In this review we explore the structural features 
of the TME and focus on the modulatory effects of different 
physical stimulations on the characteristic structures of the 
TME, such as blood vessels, the ECM, and immune cells 
(Figure 1). The adjuvant effects of these stimulations on 
other tumor therapies are also analyzed.

Characteristics of the TME

The TME refers to the internal physicochemical state that sup-
ports the survival of cancer cells. The TME encompasses var-
ious components, including blood vessels, the ECM, immune 
cells, stromal cells (e.g., fibroblasts), lymphatic vessels, sol-
uble cytokines, mediators, and other non-cellular elements, 
such as extracellular vesicles [12, 13]. The characteristics of 
the TME include low acidity [14], H

2
O

2
 accumulation [15], 

hypoxia [16], low catalase activity [17], high reducibility, and 
immunosuppression [18]. The organizational structure and 
metabolic changes within the TME interact with one another. 
From the perspective of the tumor vasculature, compared 
to normal blood vessels, the vascular network at the tumor 
site is irregular and disorganized. Tumor cells are metabol-
ically active, continuously consuming oxygen and nutrients, 
and secreting large quantities of pro-angiogenic factors, 
which further contribute to abnormal blood vessel growth. 
Simultaneously, the abnormal tumor vasculature contributes to 
the hypoxic environment within the TME. The aberrant tumor 
vessels also contribute to increased IFP, which promotes tumor 

progression and immune resistance. The walls of these abnor-
mal vessels contain a large number of endothelial cells, which 
serve as a significant source of cancer-associated fibroblasts 
(CAFs). Hypoxic conditions stimulate CAFs, leading to CAF 
dispersal and exacerbating physical stress on the tumor. As a 
result, blood and lymphatic vessels can be compressed, lead-
ing to reduced perfusion [19]. CAFs also secrete factors that 
impede T lymphocyte infiltration, reduce immune cell activity, 
and promote the accumulation of immunosuppressive cells, 
thereby suppressing anti-tumor immunity [20]. Furthermore, 
CAFs secrete factors that promote tumor angiogenesis [21]. 
In conclusion, the components of the TME interact with each 
other and collectively establish the tumor survival environ-
ment. Modulating tumor vascular changes and remodeling the 
ECM through physical stimulation create favorable conditions 
for drug and nanoparticle delivery. Moreover, physical stimu-
lation of the TME activates the immune response, laying the 
foundation for combining relevant tumor therapy with immu-
notherapy in a physically stimulated approach.

Application of physical 
 stimulation to the TME

The abnormal tumor vasculature within the TME has a cru-
cial role, displaying structural and functional abnormalities 
that result in hypoxia, acidity, elevated IFP, and increased 
permeability. These factors not only sustain the TME but 
also facilitate tumor cell invasion, metastasis, and immuno-
suppression, while hindering drug delivery [19]. Physical 
stimulation can be used to target the tumor vasculature 
and address these issues. For example, radiotherapy has 
the potential to normalize the tumor vasculature at specific 

Figure 1 A schematic diagram of the tumor microenvironment (TME) modulation by physical stimulation. Under specific conditions, physical 
stimulation (ionizing radiation, light, electricity, magnetic field, and ultrasound) modulate the TME by altering the endothelium and vasculature 
to affect perfusion, reduce the interstitial fluid pressure (IFP), cause ECM remodeling, and activate immune responses to modulate the TME.
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dosage levels [22]. CAFs present within the ECM have a 
role in remodeling the ECM, which creates a supportive 
microenvironment for cancer cells and acts as a physical bar-
rier that hinders drug penetration. Moreover, CAFs secrete 
matrix metalloproteinases (MMPs) that interfere with ECM 
degradation, which initiates cancer cell migration and inva-
sion [12]. Innovative approaches, such as physical stimula-
tion using nanoparticles that target CAFs and employing a 
low-frequency rotating magnetic field (RMF) with torque, 
have shown promising results in disrupting CAFs [23]. The 
remarkable efficacy of immune checkpoint inhibitors (ICIs) 
and chimeric antigen receptor T (CAR-T) cell therapy in 
solid tumors has prompted researchers to investigate the 
role of immune cells within the TME. Over the past dec-
ade, significant progress has been made in understanding 
the role of immune cells in the TME and developing strat-
egies for immune cell-based tumor therapy [12]. PDT and 
PTT have been demonstrated to reprogram tumor-associated 
macrophages (TAMs), inducing activation of innate immu-
nity by upregulating M1 macrophages and downregulating 
M2 macrophages [24]. The vasculature, ECM, and immune 
responses within the TME are modulated by several types 
of physical stimulations (ionizing radiation, light, electricity, 
magnetic field, and ultrasound; Table 1).

Ionizing radiation

Radiotherapy is a crucial component of cancer treatment, 
with >50% of cancer patients undergoing at least one ses-
sion of radiotherapy during treatment. Radiotherapy utilizes 
high-energy ionizing radiation, such as γ-, β-, and X-rays, 
to target and damage tumor cells. The primary objective of 
radiotherapy is to induce DNA damage directly in tumor 
cells or indirectly generate reactive oxygen species (ROS) 
by interacting with water molecules, which leads to the elim-
ination of tumor cells [25].

Vasculature alteration

The TME exhibits distinct physical characteristics, includ-
ing ECM structure and stiffness, solid stress, the IFP, and 

vascular shear stress [5]. These factors contribute to tumor 
progression and resistance to immunotherapy through var-
ious mechanisms. X-ray radiation remodels the stroma 
and alters tumor-associated blood flow, while also reduc-
ing the IFP by impacting tumor cell morphology, intra-tu-
moral microvasculature, and mesenchyme, thereby leading 
to vascular decompression and improved perfusion [26]. 
Pre-existing alterations in the tumor vasculature often hin-
der T cell infiltration into the TME due to the endothelial 
barrier. However, radiation induces increased expression of 
adhesion molecules, such as vascular cell adhesion molecule 
(VCAM)-1 and intercellular adhesion molecule (ICAM)-1 
[27], which promotes activation of endothelial-type nitric 
oxide synthase (eNOS) and nitric oxide (NO) production 
[28]. This process induces angiogenesis, enhances tumor 
blood flow [29], and facilitates T cell homing by upregulat-
ing E- and P-selectin expression on endothelial cells [30]. 
The effects of radiation on endothelial cells and blood ves-
sels are dose-dependent (Figure 2).

Table 1 Summary of the Effects of Different Physical Stimulations on the Vasculature, ECM, and Immune Responses

Physical 
 Stimulation

 
 

Effects on the TME
Vasculature  ECM  Immune Responses

Ionizing radiation  Normalization, dilation, and collapse of tumor 
vasculature [22]

 Matrix protein hydrolysis [34–37]  Induce ICD and  reprogram 
TAMs [42, 43]

Light  Vasoconstriction/diastole and vascular 
collapse [56]

 Denaturation of collagen [72]  Induce ICD and  reprogram 
TAMs [24]

Electricity  Endothelial damage, vascular destruction, or 
vascular normalization [86, 87]

 Activation of MMPs, a decrease 
in collagen production [89]

 Induce ICD and 
 re-program TAMs [90, 91]

Magnetic field  Inhibits tumor vasculature and promotes 
normal angiogenesis [96–98]

 Collagen denaturation, CAFs 
death [23, 100]

 Induce ICD and  re-program 
TAMs [104, 105]

Ultrasound  
Endothelial damage, vasodilation/constriction, 
vascular disruption, or generation [117, 121]

 
Decreased collagen content and 
decreased IFP by ultrasound 
combined with MBs [126, 127]

 
Induce ICD and  re-program 
TAMs [130, 131]

Abbreviations: MMPs: metalloproteinases; CAFs: cancer-associated fibroblasts; IFP: interstitial fluid pressure; ICD: immunogenic cell death; 
MBs: microbubbles; TAMs: tumor-associated macrophages.

Figure 2 Effects of different radiation doses on tumor vasculature 
and endothelium. At a radiation dose of 2 Gy, microRNA upregulation 
increased endothelial cell survival [136], normalization and dilation 
of the tumor vasculature and increased perfusion were observed at 
radiation doses of 5-10 Gy [22], and apoptosis of endothelial cells 
and damage to the tumor vasculature were induced at radiation 
doses >10 Gy [22].
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Extracellular matrix remodeling

It is generally believed that CAFs actively promote cancer 
invasiveness by modulating various processes, including 
angiogenesis, inflammation, and ECM remodeling [31, 
32]. CAFs do not undergo apoptosis at a radiation dose 
of 30 Gray (Gy), but senescence occurs when the radia-
tion dose exceeds 10-12 Gy [33]. Radiation can affect 
ECM remodeling in tumors by modulating protease activ-
ity. Radiation has the potential to induce hydrolysis of 
matrix proteins within the ECM, releasing stored active 
molecules, such as angiogenic factors, growth factors, and 
active matrix components. Tumor cell protease activity is 
altered after  radiation with MMP-2 expression upregulated 
in different types of tumors, such as lung cancer [34], pan-
creatic  cancer [35], colorectal cancer [36], and glioblasto-
mas [37], potentially leading to increased tumor invasion. 
Inhibition of MMP-2 before radiation enhances the sensi-
tivity of lung tumor cells to radiation therapy. Furthermore, 
radiation affects other proteases, such as MMP-9, which 
undergoes altered expression and activity in hepatocellu-
lar carcinoma cells through the PI3K/Akt/NF-κB cascade 
[38]. In non- small-cell lung cancer cells, a radiation dose 
of 2 Gy  activates the SDF-1/CXCR-4 pathway, resulting in 
increased invasiveness through the PI3K/Akt and MAPK 
pathways, leading to MMP expression both in vitro and in 
vivo [39]. However, when administered at ablative doses, 
radiation upregulates MMP-3 and downregulates MMP-
1, inducing premature senescence of CAFs and inhibiting 
proliferation, migration, and invasive capabilities [33]. 
Additionally, radiation-induced ECM remodeling involves 
lysyl oxidase (LOX), which enhances the soluble deposi-
tion and tensile strength of the ECM and correlated with 
tumor metastasis and invasion [40].

Overall, radiation may affect the invasive and metastatic 
capacity of tumors by modulating protease activity and ECM 
remodeling. Some differences exist as a function of tumor 
type and microenvironmental conditions, so further investi-
gation is warranted to better understand the effects of radia-
tion on the TME.

Immune response activation

Radiation can induce tumor-targeted immune responses, 
which are largely dependent on the antigenicity of tumor 
cells and the ability to generate adjuvant signals [41]. 
Specifically, radiation-induced immunogenic cell death 
(ICD) [42] contributes to immune cell dissemination. The 
effects of radiation dose on the TME are diverse. For exam-
ple, low-dose radiation (2 Gy) stimulates TAMs of the 
M1 phenotype to produce inducible nitric oxide synthase 
(iNOS), which promotes the formation of an immunogenic 
TME and an immunogenic environment [43]. Conversely, 
higher radiation doses lead to pro-tumorigenic M2 phe-
notype TAM infiltration into the tumor [44]. Studies have 
indicated that a single radiation dose of 5-10 Gy results in 
mild vascular alterations within the TME. However, doses 
exceeding 10 Gy cause endothelial cell death, which leads 
to significant vascular damage and reduced blood flow. This 

compromised vasculature hinders the recruitment of effec-
tor T cells, resulting in decreased immune cell infiltration 
and potentially contributing to hypoxia within the TME [45]. 
High-dose daily fractionation (8 Gy × 2) has been reported to 
offer several advantages over low-dose daily fractionation (2 
Gy × 10). High-dose daily fractionation preserves peripheral 
and tumor-infiltrating effector immune cells, down-regulates 
immune-suppressive cells, increases immune cell expression 
in the TME, and enhances tumor-specific immune responses 
[46]. Radiotherapy is promising for adjuvant immunother-
apy. For example, Qu et al. [47] failed to achieve the desired 
therapeutic effect when treating rectal squamous cell car-
cinoma with high PD-L1 expression by chemotherapy and 
immunotherapy alone, but after adjuvant radiotherapy, the 
tumors achieved complete remission with a recurrence-free 
status within 12 months.

Light

Phototherapy is a tumor treatment modality that primarily 
involves two techniques (PDT and PTT). Compared to tra-
ditional cancer treatment options (radiotherapy and chemo-
therapy), phototherapy specifically targets desired cells or 
tissues, resulting in improved targeting and reduced side 
effects [48]. PDT is a non-invasive therapeutic approach 
that utilizes photosensitizers (PSs). These PS agents selec-
tively accumulate in tumor tissues. When exposed to a spe-
cific wavelength of laser light, the PS is activated, leading 
to the generation of ROS by consuming molecular oxygen. 
This process causes DNA damage and ultimately leads to 
tumor cell death [49]. With respect to light dosimetry, the 
used impact rate in PDT is typically kept low (<200 mW/
cm2) to prevent thermal damage to the tissue [50]. It is also 
important to note that the individual components of PDT are 
non-toxic and it is only when PS is irradiated with light that 
cytotoxic reactive oxygen species (ROS), such as mono-lin-
ear oxygen (1O

2
), superoxide anion (O

2
•−), and hydroxyl 

radical (•OH), are produced, which then cause cellular DNA 
damage [51].

Conventional PTT utilizes the heat generated by 
 near- infrared materials (>50°C) to directly destroy tumor 
cells [52]. Compared to conventional treatments, PTT is less 
harmful to normal organs because PTT specifically localizes 
to tumor areas where PS accumulates and precisely applies 
laser irradiation. PTT is becoming a popular method for var-
ious diseases and cancers due to safety and precision [53]. 
However, the high temperatures of conventional PTT inevi-
tably cause non-specific thermal damage to the surrounding 
healthy tissues. The necrosis induced by conventional PTT 
leads to severe local inflammation, further damage to healthy 
tissues, and even an increased risk of tumor metastasis [54]. 
Studies have also shown that conventional PTT suppresses 
host anti-tumor immunity by compromising immune anti-
gens in the TME due to hyperthermia [55]. In contrast, mild 
PTT (mPTT [usually 42–45°C]) is a relatively low-tempera-
ture PTT method that offers advantages and features in terms 
of a modulating effect on the TME compared to conventional 
high-temperature PTT.
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Vasculature alteration

PDT and PTT have dose-dependent effects on the vascula-
ture. Early studies demonstrated that PDT causes multiple 
vascular effects, including altered vascular permeability, 
vasoconstriction/diastole, and vascular collapse [56]. In addi-
tion to direct damage to blood vessels, PDT also alters blood 
vessel permeability, which is crucial for systemic drug deliv-
ery. Studies have shown that when combined with medium 
doses of vascular-targeting agents, PDT significantly dis-
rupts tumor perfusion and enhances drug delivery [57]. PDT 
has proven to be an effective treatment for a wide range of 
cancers, such as skin [58], head and neck [59], and super-
ficial bladder cancers [60]. However, solid tumor hypoxia, 
which results from uncontrolled tumor growth and dysregu-
lated angiogenesis, poses a challenge to PDT efficacy [61]. 
In addition, PDT leads to microvascular collapse, impeding 
O

2
 transport and exacerbating hypoxia in the TME, which 

further diminishes the effectiveness of PDT [62]. To address 
this issue, a commonly used approach is to design a variety 
of smart nanoplatforms based on the high expression of H

2
O

2
 

in tumor cells. Under laser stimulation, nanomaterials, such 
as MnO

2
 [63], CaO

2
 [64], RuO

2
 [65], Fe

3
O

4
 [66], carbon dots 

[67], and biological catalase [68], react with H
2
O

2
 to produce 

O
2
, thereby alleviating hypoxia at the tumor site and improv-

ing the efficacy of PDT.
An early study [69] indicated that mild heat therapy 

enhances tumor blood flow and improves intravascular hemo-
globin (Hb) oxygen saturation within the tumor. However, 
at higher temperatures, there is a transient increase in blood 
flow during the heating process, followed by the onset of 
vascular damage. The vascular damage leads to reduced 
tumor perfusion and oxygenation, decreased pH levels in the 
TME, and ultimately ischemia and cell death. Therefore, in 
addition to the development of nanoplatforms, mPTT also 
assists in improving the efficacy of PDT by increasing tissue 
oxygen saturation and ameliorating hypoxia in the TME.

In addition, the generation of ROS during PDT causes 
cellular DNA damage, whereas thermotherapy denature 
proteins involved in DNA repair [56] and thermotherapy 
has been shown to increase mitochondrial ROS levels [70], 
suggesting that PTT has a promising application in enhanc-
ing PDT.

Extracellular matrix remodeling

Solid tumors often exhibit increased ECM content, which 
contributes to elevated tissue stress and IFP. This finding, 
coupled with collapsed tumor blood vessels, can impede 
systemic drug delivery and compromise therapeutic efficacy 
[71]. In 1987 Barr et al. [72] conducted experimental studies 
in rats to determine the impact of PTT on the ECM. Barr et 
al. [72] used a 675-nm laser at 500 mW for 100 seconds on 
the rat colon, which resulted in an increase in temperature to 
66 ± 7.5°C. Transmission electron microscopy revealed sig-
nificant swelling and structural changes in submucosal colla-
gen, indicating thermal damage and protein denaturation. In 
contrast, when the colon was treated with a hematoporphyrin 
derivative, PDT (100 mW power for 500 seconds), resulted 
in no ECM structural changes. This finding suggested that 

PDT preserves ECM structure (specifically, the submucosal 
collagen). Subsequent studies have also demonstrated that 
PTT with a near-infrared (NIR) laser or mild hyperthermia 
leads to collagen denaturation. Indeed, several studies have 
demonstrated that PTT or mild hyperthermia (43°C for 15 
min) leads to collagen denaturation [73, 74]. Overall, these 
experimental findings indicate that with the assistance of 
some nanoparticles, PTT induces corresponding structural 
changes in the tumor ECM, including collagen reorganiza-
tion. This facilitates more effective drug penetration into the 
tumor and contributes to an improved tumor treatment.

In 2023 Overchuk et al. [56] conducted a study on 
sub-therapeutic prostate-specific membrane antigen 
(PSMA)-targeted PDT (50 J/cm2) in subcutaneous prostate 
tumor xenografts. The findings revealed a 2-fold reduction 
in the total collagen density of the tumors compared to the 
previous study and electron microscopy showed a suben-
dothelial region with reduced collagen coverage. Due to 
the precise therapeutic boundaries and non-thermal nature, 
PDT preserves ECM structures, which aids in healing and 
reducing scarring. Both PDT and PTT induce changes in the 
ECM of the tumor, which can be beneficial in the therapeutic 
regimen.

Immune response activation

PDT and PTT elicit immune responses by releasing tumor- 
specific antigens (TSAs) and producing immune-modulating 
molecules, such as calreticulin (CRT), high-mobility group 
box 1 (HMGB1), ATP, and heat shock proteins (HSPs). These 
immune responses have a crucial role in targeting and elimi-
nating tumor cells [75–77]. By inducing ICD, PDT and PTT 
lead to the release of inflammatory cytokines, such as IL-6, 
IL-1β, TNF-α, and chemokine C-X-C ligand 2 (CXCL2). 
This initial inflammation promotes the activation and recruit-
ment of antigen-presenting cells (APCs), such as dendritic 
cells (DCs), which can enter local lymph nodes, take up and 
process TSAs, present TSAs to naive T cells, thereby activat-
ing long-term adaptive immunity [78]. PDT and PTT treat-
ments induce ICD and reprogram TAMs, promoting innate 
immunity by upregulating M1 macrophages and downreg-
ulating M2 macrophages (Figure 3). This re-programming 
boosts anti-tumor immune responses and contributes to the 
therapeutic effects of PDT and PTT in cancer treatment [24]. 
However, unlike PDT, PTT may only induce ICD within a 
specific thermal window. For example, a study conducted by 
Sweeney et al. [79] demonstrated that PTT using Prussian 
blue nanoparticles (PBNPs) in neuroblastoma cell-induced 
ICD at the optimal thermal dose. The expression of ICD 
markers, such as the release of calreticulin, ATP, HMGB1, 
and CRT, is most evident on the cell surface when the cells 
are heated at temperatures ranging from 50–60°C for 10 min. 
Temperatures <50°C or >60°C were shown to be ineffective 
[75]. While some PDT regimens, particularly repeated PDT 
treatments, have shown the ability to activate adaptive immu-
nity and induce effects in vitro alone [80], PDT and PTT 
typically require additional immune adjuvants or methods to 
enhance the immune response. Ghosh et al. [81] combined 
chemophototherapy and immunotherapy (a combination of 
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PD-1 and anti-cytotoxic T-lymphocyte-associated protein 4 
[CTLA-4] antibodies) to ablate medium-sized KPC pancre-
atic cancer tumors and induce memory immune responses. 
The results therein indicate that chemotherapy and immuno-
therapy alone cannot eliminate small KPC tumors. However, 
when used in combination, chemotherapy and immunother-
apy can even clear medium-sized KPC tumors and protect 
against tumor re-attack. The enhanced synergy of these two 
treatments is facilitated by the penetration and accumulation 
of PDT-induced anti-PD-1 antibodies breaking through the 
physical barrier of the TME at the tumor site.

Electricity

Electric fields can have various biological effects, includ-
ing stimulating healing, causing direct tissue damage, or 
inducing cell death by disrupting cell mitosis. In the field of 
electric field applied oncology therapy, pulsed electric field 
(PEF)-based therapies include irreversible electroporation 
(IRE), gene electrotransfer (GET), electrochemistry (ECT), 
calcium electroporation (Ca-EP), and tumor-treating fields 
[TTF] [82]. Among these therapies, IRE is widely utilized for 
tumor ablation. IRE involves the application of short pulses 
of high-pressure electricity to create nanoscale perforations 
in cell membranes, subsequently inducing apoptosis [83]. In 
recent years, TTF has shown unique advantages in the treat-
ment of glioblastomas, pleural mesotheliomas, and lung and 
pancreatic cancers [82]. Studies have indicated that the use 
of low-voltage, mid-frequency (100-500 kHz) electric fields, 
such as TTF, impede DNA repair, induce autophagy, pro-
mote anti-tumor immunity, inhibit tumor cell migration and 
invasion, and alter the permeability of cell membranes and 
the blood-brain barrier [84].

Vasculature alteration

It has been shown that PEFs inhibit angiogenesis in tumor tis-
sues and suppress tumor angiogenesis, leading to a reduction 

in tumor growth [85]. In the study by B. Markelc et al, signif-
icant alterations in the morphology of endothelial cells were 
observed 1 h after application of an electric pulse. These 
cells became rounded and swollen, resulting in a constric-
tion of the blood vessel lumen [86]. Other studies reported 
that ECT targets endothelial cells, triggering apoptosis and 
causing vascular destruction. Interestingly, electroporation 
exhibits greater efficacy in eliminating endothelial cells 
within small tumor vessels, while larger vessels appear to 
be more preserved [87]. Furthermore, electrical stimulation 
also breaks intracellular bioelectrical homeostasis, thereby 
promoting normalization of the tumor vasculature and facili-
tating drug delivery [88]. Li et al. [88] demonstrated that the 
combination of radio-stimulation and the chemotherapeutic 
agent, adriamycin, exhibits 1.8-fold higher anti-tumor effi-
cacy compared to treatment with adriamycin alone.

Extracellular matrix remodeling

In 2022 Gouarderes et al. [89] demonstrated that PEFs induce 
remodeling of the ECM by activating MMPs and reducing 
collagen production. Regardless of the electrical stimulation 
protocol used in the experiments, the tissue collagen con-
tent was significantly reduced by 35%–50% after 1 week of 
electrical stimulation. PEFs promote collagen remodeling 
by transiently decreasing collagen production and increasing 
collagen degradation through sustained activation of MMPs 
by ROS. PEFs downregulate the expression of TGF-β, a 
major regulator of fibrosis, at the mRNA and protein levels. 
Furthermore, there was a substantial decrease in the gene 
expression of key enzymes involved in ECM cross-linking, 
such as lysyl oxidase (LOX) and transglutaminase.

Immune response activation

Electrical stimulation, like other physical stimulations, 
has the potential to directly eliminate tumor cells and 
elicit immune responses, making electrical stimulation a 

Figure 3 Diagram of the role of physical stimulation in the modulation of the tumor immune microenvironment. Except for magnetic fields, 
which polarize macrophages toward the M2 phenotype, other physical stimulations, such as ionizing radiation, light, electricity, and ultra-
sound, polarize macrophages toward the M1 phenotype. iCD: immature dendritic cell; mCD: mature dendritic cell.

BIOI 2024
R

ev
ie

w



Z. Guo et al.: DOI: 10.15212/bioi-2024-0012 7

promising therapeutic approach for tumors [90]. Research 
has indicated that tumor cell death induced by electrical 
stimulation undergoes conversion from non-immunogenic 
to immunogenic, which is known as ICD. This process 
leads to the massive release of tumor antigens and dam-
age-associated molecular patterns (DAMPs), attracting 
DCs to gather at the tumor site [91]. Furthermore, DCs are 
responsible for presenting tumor antigens to T cells, thus 
triggering an adaptive immune response [92]. Kong et al. 
[90] demonstrated that driving local charge release under 
ultrasound irradiation significantly enhances M1 polariza-
tion in macrophages. Additionally, electrical stimulation 
induces inflammation, prompts the release of pro-inflam-
matory cytokines and chemokines, and stimulates anti-tu-
mor immunity. For example, Chen et al. [93] demonstrated 
that TTF generates pro-inflammatory cytokines and type I 
interferon.

Magnetic field

Magnetic fields are classified based on their characteristics 
and generation methods. With respect to characteristics, 
there are constant magnetic fields (CMFs) and dynamic 
magnetic fields (DMFs). Regarding the generation method, 
magnetic fields can be categorized as alternating magnetic 
fields (AMFs), geomagnetic fields (GMFs), pulsating mag-
netic fields (PuMFs), and pulsed magnetic fields [PMFs] 
[94]. Magnetothermal therapy (MHT) is a technique that uti-
lizes the thermal effect of magnetic nanoparticles (MNPs) 
to treat tumors. In addition to the thermal effects, magnetic 
field exposure generates corresponding mechanical forces, 
including tension, compression, shear force, and torque. 
These forces significantly impact the cellular environment, 
including the plasma membrane and internal organelles (e.g., 
mitochondria, lysosomes, and nuclei). This impact results in 
noticeable morphologic changes and intracellular damage. 
Activation of apoptotic or non-apoptotic cellular signals sub-
sequently induces tumor ablation [8].

Vasculature alteration

At the vascular level, sub-thermal therapy has been shown to 
increase permeability of the tumor vasculature and enhance 
blood flow through the tumor vasculature. Nanoparticle 
extravasation increases with rising temperatures from 
40°C–42°C. However, temperatures >42°C lead to bleeding 
and stagnation of the tumor vasculature [95]. A static mag-
netic field (SMF) reduces blood flow and platelet adhesion 
in tumor microvessels, thereby inhibiting tumor angiogene-
sis in murine experiments [96]. DMFs have both generative 
and inhibitory effects on angiogenesis. The specific effects 
of DMFs on angiogenesis vary depending on various param-
eters, such as magnetic field strength and frequency. Hu et 
al. [97] conducted a study reporting a strong inhibitory effect 
of time-varying magnetic fields on tumor growth. The effect 
was more pronounced at weak magnetic fields (1-5 nT) com-
pared to strong magnetic fields (2-5 mT). However, DMFs 
may promote angiogenesis in normal tissues and pulsed 

electromagnetic fields (PEMFs) with specific parameters 
have been shown to promote angiogenesis [98].

Extracellular matrix remodeling

Elevated temperatures have an impact on the ECM, and spe-
cifically on the structure of collagen [73, 99]. Magnetothermal 
therapy, similar to PTT, induces collagen denaturation and 
ECM remodeling. For example, when magnetic nanopar-
ticles are positioned on top of collagen in the presence of 
AMF, the heat generated by the nanoparticles causes colla-
gen to undergo phase change and melt [100]. Disruption of 
intracellular membranes has also been shown to effectively 
induce cell death [101]. Building upon this concept, Lopez 
et al. [23] found that nanoparticles specifically designed 
to target CAFs in pancreatic cancer are exposed to a low- 
frequency RMF, which resulted in interaction with lysoso-
mal membranes. This interaction, facilitated by mechanical 
forces or activation of mechanosensitive ion channels on 
the lysosomal membranes, generated torque inside the lyso-
somes, effectively disrupting the lysosomal membranes and 
inducing death in CAFs.

Immune response activation

It has been shown that local heat therapy enhances anti-tu-
mor immunity. Heat stress applied to tumor cells induces the 
release of HSPs that are recognized and activated by APCs 
[102]. This activation triggers the presentation of antigens 
to T cells, initiating adaptive immune responses [103]. In 
murine experiments, the use of magnetorheological fluid 
(MRF) or magnetotherapy to destroy primary tumors results 
in selective necrosis of malignant cells, while preserving 
tumor-infiltrating immune cells and inducing ICD. This 
in  situ tumor injury activates DCs, recruiting DCs to the 
primary tumor site. The activated DCs then stimulate CD8+ 
T cells, leading to anti-tumor effects at the primary tumor 
site and distant sites [104]. It has also been shown that mac-
rophages tend to be converted to a pro-tumor development 
M2 phenotype under high-gradient magnetic fields [105] 
[Figure 3].

Ultrasound

Ultrasound-related treatments have become widely used in 
the biomedical field due to safety, visualization capabilities, 
non-invasiveness, and relatively low cost of instruments [106]. 
Ultrasound waves are mechanical sound waves with frequen-
cies higher than the human hearing range (16–20 kHz) that are 
capable of penetrating tissues up to a depth of approximately 
10 cm [107]. Ultrasound waves enable precise localization of 
specific areas, selective destruction of pathologic tissues, and 
minimal damage to adjacent normal tissues and organs [108]. 
With respect to specific applications, therapeutic ultrasound 
can be categorized into non-thermal and thermal ultrasound 
energy, represented by SDT and high-intensity focused ultra-
sound (HIFU), respectively [109]. SDT activates the acoustic 
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sensitizer through low-intensity ultrasound, leading to the pro-
duction of ROS and subsequent destruction of tumor cells. As 
a non-invasive treatment for tumors, SDT shows promise as 
an anti-cancer therapy. The development and widespread utili-
zation of nanomaterials has opened up opportunities for novel 
ultrasound sensitizers with tumor-targeting specificity. These 
sensitizers penetrate deep into the tumor, thereby improving 
the TME. HIFU, as a non-invasive procedure for cancer abla-
tion, has also rapidly evolved in the treatment of solid tumors 
over the past few decades.

In addition, ultrasound induces a range of biological 
effects by activating acoustic sensitizers, including the gen-
eration of ROS [110], non-thermal effects, such as cavitation 
and mechanical effects, as well as thermal effects [111]. The 
thermal and mechanical effects of ultrasound have distinct 
applications in modulation of the TME.

Vasculature alteration

Hyperthermia induces several changes in the vasculature, 
with vasodilation being the most prominent. Such changes 
in the vasculature leads to increased blood flow, reduced 
hypoxia in the TME, improved acidity levels, and decreased 
interstitial pressure [112, 113]. Due to the direct reflection of 
the temperature receptor to activate the vascular smooth mus-
cle, when the cumulative equivalent min at 43°C (CEM43) is 
low, the thermal effects of ultrasound result in vasodilation 
[114] and increase blood flow. Mild hyperthermia leads to a 
reduction in tumor IFP [115]. The effects of mild hyperther-
mia on blood vessels are reversible and do not cause tissue 
damage. Nevertheless, higher levels of CEM43 temporarily 
or permanently constrict blood vessels and cause congestion 
at the edges [106]. High-intensity ultrasound pulses also 
temporarily or permanently reduce blood vessel diameter. 
In addition to thermal effects, focused ultrasound (FU) tran-
siently increases vascular permeability through mechanical 

effects [106] [Figure 4]. Price et al. [116] demonstrated that 
the cavitation effect can cause microvascular rupture, lead-
ing to the extravasation of red blood cells into the ECM. This 
finding indicates that ultrasound-induced cavitation disrupts 
endothelial cell membranes and enhances cell membrane 
permeability [117]. Moreover, other mechanisms have been 
proposed to explain the effect of cavitation on cell membrane 
permeability. For example, cavitation leads to the formation 
of intracellular ROS, which might contribute to increased 
permeability of cell membranes [118]. When microbubbles/
nanobubbles (MBs/NBs). collapse, the localized transient 
warming to 4300–5000 K affects mobility of the phos-
pholipid bilayer and enhances cellular permeability [119]. 
Increased endothelial cell permeability following ultrasound 
combined with MB treatment induces blood-brain barrier 
opening [120]. In addition to the effect on cell membrane 
permeability, the cavitation effect affects the vasculature and 
blood perfusion. Blood perfusion is reduced shortly after 
exposure to FU and MBs, and may be due to the increased 
fragility of newly formed blood vessels in tumors compared 
to healthy tissues. When exposed to cavitation MBs, these 
fragile tumor blood vessels sustain vascular injury and dis-
ruption of the capillary walls, leading to reduced perfusion 
[121]. Additionally, when combined with MBs, FU open 
up blood vessels and enhance perfusion. This effect may be 
mediated by the release of NO triggered by shear stress. The 
effect could also be related to increased mechano-transduc-
tion within endothelial cells due to mechanical interactions 
[122]. In conclusion, the impact on perfusion depends on 
various factors, such as the specific ultrasound treatment 
used, the type of tissue, and the vasculature structure.

Extracellular matrix remodeling

Tumors typically exhibit elevated pressure, which can be 
classified as solid pressure and IFP. Solid pressure refers 

Figure 4 Ultrasound effects on blood vessels.
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to the pressure exerted by tumor cells, stromal cells, and 
ECM components as the density increases within the con-
fined space of the host tissue. This solid pressure com-
presses pliable structures, like tumor blood and lymphatic 
vessels. Compression of lymphatic vessels reduces tumor 
drainage, leading to an increase in IFP [123]. Dysfunction 
of the lymphatic system and the dense ECM in tumors 
further exacerbates the increase in IFP. Exudate infiltrates 
from hyperpermeable vessels into the tumor interstitium, 
but due to the impaired lymphatic drainage and resistance 
posed by the dense ECM, the fluids are unable to ade-
quately drain or penetrate the surrounding normal tissue 
[124]. Consequently, the tumor mesenchyme accumulates 
excess fluid that cannot be eliminated and the IFP grad-
ually increases and eliminates the pressure gradient with 
the fluid, thereby limiting drug movement by convection. 
Reducing solid pressure and IFP to modulate the TME 
structure has been shown to improve drug delivery to the 
tumor mesenchyme [125].

Pulsed-HIFU remodeled the ECM in a murine A549 
lung cancer experiment, resulting in increased vascular 
blood flow, decreased collagen content, and enhanced tis-
sue permeability [126]. Because the size of MBs (2–3 μm 
in diameter) is limited by the vascular system, most MBs 
do not enter the ECM but how the size of MBs affects the 
tumor ECM is not clear. Xiao et al. [127] demonstrated a 
reduction in the IFP and an increase in drug penetration 
by a combination of 1 MPa and 10-min exposure time in 
ultrasound and MBs. To observe a reduction in the IFP, the 
presence of MBs is necessary because the ultrasound alone 
does not alter the IFP [128]. It is important to note that pro-
longed exposure to the ultrasound for >5 min destroys all 
MBs. Therefore, the observed decrease in the IFP reported 
by Xiao et al. [127] may have been primarily caused by 
hyperthermia rather than the direct effect of ultrasound on 
the IFP. Hyperthermia induced by ultrasound, which raises 
the body temperature to 42°C for 5 min, has been shown 
to reduce the IFP [115]. In the mentioned study [115], the 
authors also observed a reduction in the IFP after eutha-
nasia in mice following ultrasound exposure. This finding 
suggests that the decrease in IFP was not solely a result of 
changes in blood flow but might also be associated with 
alterations in the ECM. Thus, the effects of ultrasound 
on the IFP may be attributed to a combination of factors, 
including changes in blood flow and potential modifica-
tions in the ECM.

Immune response activation

Ultrasound thermotherapy, ablation, tissue sectioning, and 
microbubble stabilization/inertial cavitation alter the TME, 
enhance immune activation, and inhibit tumor growth. 
Microbubble cavitation increases vascular permeability, 
which improves the delivery of immune cells, cytokines, 
antigens, and antibodies to the tumor. Vigorous microvesicle 
cavitation destroys tumor cells, effectively exposing tumor 
cells to a wide range of antigens, thereby promoting the mat-
uration of APCs and subsequent adaptive immune cell acti-
vation [129]. In contrast, like other physical stimulations, 

ultrasound also induces ICD [130]. Ultrasound-induced 
ablation directly destroys tumor tissues, as in HIFU ther-
apy, and the ablation releases tumor-associated antigens and 
a variety of biologically active molecules, which release 
endogenous DAMPs (e.g., HSP-60 and ATP) to activate 
APCs. Activated APCs initiate T cells to for antigen-spe-
cific cellular immune responses [103]. During ultrasound 
ablation therapy, the increase in temperature also enhances 
blood perfusion and promotes circulation and penetration 
of immune cells in the target area [129]. Mechanical HIFU, 
in addition to increasing immune cell infiltration, facilitates 
the conversion of macrophages to an immunostimulatory 
M1 phenotype [131]. FU alone has immunostimulatory 
potential. Increasing the intensity of focused ultrasound 
in glioblastomas within safe limits was shown to increase 
tumor-infiltrating lymphocytes and produce an immunos-
timulatory TME [132]. Many studies have been conducted 
to show that ultrasound effectively assists immunotherapy. 
For example, Hu et al. [133] showed that the therapeutic 
effect of anti-PD1 monotherapy alone was weak when used 
to treat tumors but combined with ultrasound combined with 
nanobubbles (USNBs) significantly enhanced the effect of 
anti-tumor immunotherapy.

Conclusion and future 
 perspectives

Various physical stimulations have intersections and dif-
ferences in modulation of the TME, which mainly includes 
influencing the vasculature, ECM, and immune responses. 
The TME changes induced by physical stimulation not only 
facilitate the improvement of drug or nanomaterial delivery 
in resistant conditions but also modifies the immunosuppres-
sive microenvironment, paving the way for immunotherapy. 
In general, physical stimulation can be used to modulate the 
TME as an adjuvant therapy and a stand-alone treatment 
for tumors. Treatment alone has the following advantages: 
1) non-invasive or minimally invasive; 2) significant local 
therapeutic effect superior to chemotherapy and reduced side 
effects; 3) a curative role for early-stage tumors, achieving 
tumor reduction for middle- and late-stage tumors; 4) accu-
rate positioning and good targeting; and 5) use as an adju-
vant or combined therapy. However, physical stimulation, as 
a kind of pure auxiliary stimulation or therapeutic means, 
only targets stimulation to the local tumor site and can do 
nothing to the metastatic or spreading tumors. Combination 
therapy has brought new prospects. With the deep explora-
tion of the TME and the advances of modern nanotechnol-
ogy, targeted tumor treatment strategies using nanomaterials 
as carriers coupled with various physical stimulations have 
garnered widespread attention [66]. For example, the com-
bination of physical stimulation with chemotherapy and 
immunotherapy shows complementary advantages, signifi-
cantly improving tumor treatment efficacy and reducing the 
formation of metastatic lesions [134]. Additionally, thera-
pies utilizing biological carriers, such as bacteria, combined 
with physical stimulation have also demonstrated promising 
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therapeutic effects [135]. In summary, this review has pro-
vided a reference for future research. As scientific inquiries 
delve further, combination therapy has become a focal point 
in current tumor treatment studies, creating favorable con-
ditions for drug delivery and immunotherapy by modulat-
ing changes in the TME. Undoubtedly, combination therapy 
holds significant implications for future anti-tumor research. 
However, in the face of the complexity of the TME and the 
heterogeneity caused by individual differences, there is still 
a long way to go in exploring more precise and effective 
methods to modulate the TME and apply the findings in 
clinical tumor treatment. Despite the presence of numerous 
obstacles, we envision that the combination of physical stim-
uli-based cancer nanotherapy with chemotherapy drugs and 
immunotherapy will become an effective treatment approach 
in the near future.
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