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Embedding R inside the PhysPK Bio-
simulation Software for Pharmacokinetics 
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Introduction

Population-based approaches and math-
ematical modeling are key elements for 
pharmacologists and pharmaceutical com-
panies to characterize the pharmacoki-
netics (PK) and pharmacodynamics (PD) 
of a drug product. By analyzing the rela-
tionship between exposure, safety, and 
efficacy, these techniques provide critical 
insight for drug development. It is impera-
tive that the pharmaceutical industry makes 
these tools accessible to a wider audience 
to ensure transparency and reproducibil-
ity of the modeling process. Additionally, 
PK and PD descriptions are essential for 
regulatory approval. The United States 
Food and Drug Administration (FDA) and 

the European Medicines Agency (EMA) 
require comprehensive PK and PD data to 
evaluate the safety and efficacy of a new 
drug. Modeling and simulation (M&S) 
techniques have emerged as powerful tools 
to provide faster and cost-effective answers 
regarding a new drug’s safety and efficacy, 
making them increasingly popular in the 
pharmaceutical industry [1–4].

Although many PK and PD software 
tools are available for generating diagnos-
tic tables and plots, the built-in tools are 
often inflexible and inefficient. Therefore, 
it might be challenging to incorporate cre-
ated displays into presentations, reports, 
and manuscripts [5, 6]. Computer com-
munities, however, have proposed alterna-
tive solutions, such as linking PK and PD 
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Abstract

Background: PhysPK stands as a flexible and robust bio-simulation and modeling software designed for 
analysis of population pharmacokinetics (PK) and pharmacodynamics (PD) systems. PhysPK equips users 
with standard diagnostic plots for pre- and post-analysis to delineate PK and PD within population-based 
frameworks. Furthermore, PhysPK facilitates the establishment of mathematical models that elucidate the 
intricate interplay between exposure, safety, and efficacy.
Methods: Enhancing simulation modeling capabilities necessitates seamless integration between commer-
cial discrete-event PK and PD simulation tools and external software. This synergy can be amplified by 
incorporating open-source solutions, like R, which boasts a rich array of comprehensive packages tailored 
for diverse tasks, including data analysis (ggplot2), scientific computation (stats), application development 
(shiny), back-end web development (dplyr), and machine learning (CARAT). The integration of R within 
PhysPK holds the potential to efficiently interpret and analyze PK/PD output and routines using R packages.
Results: This article presents a tutorial that highlights the incorporation of R code within PhysPK and the 
rendering of R scripts within the PhysPK monitor. The tutorial utilizes a two-compartment model for com-
parison against the analysis developed by Hosseini et al. in 2018 within the context of the gPKPDSim 
application and WinNonlin® software. The illustrative example that is provided and discussed demonstrate 
estimated and simulated plots, revealing negligible differences in the significance for C

L
 and C

Ld
 (6.89 ± 0.2 

and 45.5 ± 17.4 [reference], and 7.06 ± 0.32 and 49.04 ± 9.2 [PhysPK], respectively), as well as volumes V
1
 

and V
2
 (49.15 ± 3.8 and 34.61 ± 5.2 [reference], and 48.8 ± 3.66, and 33.2 ± 3.95 [PhysPK], respectively).

Conclusions: Our study underscores the potential of integrating open-source software, replete with an array 
of innovative packages, to elevate predictive capabilities and streamline analyses in PK methods. This inte-
gration ushers in new avenues for an advanced intelligent simulation modeling within the realm of PK, thus 
holding significant promise for the advancement of drug research and development.
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platforms with external programming languages (Python, 
Julia, R, or MATLAB). In so doing, the simulation modeling 
process becomes more dynamic and flexible, thus allowing 
for more mathematical and algorithmic capabilities [7].

Among these languages, R [8] stands out as an open-source, 
platform-independent, and general-purpose  programming 
language. R offers numerous complex and comprehensive 
packages for data analysis, scientific computing, applica-
tion development, back-end web development, and machine 
learning. The popularity of R has skyrocketed in recent years 
due to its machine learning library stack. R has become one 
of the leading technologies for building models and data 
mining in many industries and developing new methods for 
researchers [9–12]. In the context of PK and PD models, 
R has the capability to automatically detect incomplete or 
erroneous data and implement customized rules that ensure 
the accuracy and consistency of information across differ-
ent projects and processes. Leveraging the power of R can 
offer a multitude of benefits for data processing and manip-
ulation, experimentation, optimization, result analysis, and 
visualization [13, 14]. Using R for PK and PD modeling 
offers limitless advantages in these areas. With its ability to 
handle complex data structures and its vast array of statisti-
cal and graphical packages, R can efficiently manage large 
datasets, explore and analyze data, and generate visual rep-
resentations of results. Additionally, the flexible and modu-
lar programming language of R allows for rapid prototyping 
and model development, making R an ideal tool for iterative 
and exploratory research. Overall, R provides a versatile and 
powerful platform for pharmacologists and pharmaceutical 
companies to optimize PK and PD modeling workflow and 
generate robust results.

PhysPK® (https://www.physpk.com/) is a flexible bio- 
simulation software in the PK field for characterizing drug 
products through population-based proposed inside an 
integrated development environment (IDE) powered by 
EcosimPro® platform. PhysPK is a first-class simulation 
tool for modeling continuous-discrete PK and PD systems. 
The object-oriented approach prevents re-coding simulation 
applications every time a new project is initiated [15–17]. 
PhysPK offers a versatile and multidisciplinary tool for ana-
lyzing and simulating scenarios in non-compartmental anal-
ysis, PK and PD, physiologically-based pharmacokinetics 
(PBPK), and quantitative systems pharmacology (QSP). In 
addition, PhyPK is a multi-paradigm numerical computing 
environment and programming language IDE that supports 
tools for modeling, simulation, visualization graphs, and sta-
tistics. These data can be visualised in the monitor in a quick, 
editable, and easy way. To enrich PhysPK with R packages, 
the PhysPK flexibility tool can be configured to run external 
scripts. Thus, individual and population-based PK and PD 
M&S methods in PhysPK can be enhanced with R packages 
for stats, graphs, and reports to improve PhysPK outputs for 
optimization, estimation, or simulation.

Integrating R scripts and solutions inside PK and PD 
software can be useful to carry out complete PK population 
analysis and descriptions, especially because R packages 
are continually evolving to provide innovative new methods 
and solutions for a range of areas, including pharmacology 
and PK [18, 19]; however, there is currently no PK software 

that integrates R scripts inside PK population analysis in one 
step [20]. To address this gap in functionality, we propose 
using the new functionality of PhysPK to embed R inside 
the program to render R scripts. This flexible feature of 
PhysPK can be used for any output from the bio-simulation 
software, with default scripts available for common statisti-
cal processes, such as spaghetti plots, goodness-of-fit plots, 
parameter distribution profiles, or visual predictive checks. 
Although a basic understanding of the R programming 
 language is required for adding new scripts, embedding R 
packages can simplify and improve the interpretation, visu-
alization, and analysis of PK and PD output, as demonstrated 
by the plots, graphs, and statistics presented herein.

This tutorial has two goals: (i) describe the integration 
between PhysPK and R; and (ii) provide an illustrative exam-
ple by implementing the validation of a population analysis 
developed by Hosseini et al. [21]. The remainder of this paper 
is structured as follows: Section 2 presents the methods used, 
including descriptions of the dataset and model for simulation 
and data fitting re-estimation, software, initial configuration 
of PhysPK, R scripts configuration, and model validation; 
Section 3 describes the results obtained; Section 4 provides a 
comprehensive discussion; and Section 5 draws some conclu-
sions and points out a few lines of future research.

Methods

Dataset and model for simulation 
and data fitting re-estimation
To examine the functionality of embedding an R script 
within bio-simulation software, we implemented the two- 
compartment model developed by Hosseini et al. [21] (case 
1). The dataset used in the analysis was provided by Hosseini 
et al. [21]. The study design involved a single dose (10 or 
100 mg/kg) intravenous (IV) administration with a 15-min 
administration rate and 35 days of treatment. Each group was 
comprised of three subjects. A standard two-compartment 
antibody PK model was used to estimate the PK parameters.

The workflow connection is illustrated in Figure 1 and 
will be briefly described below. The current population 
estimation module of PhysPK provides a first-order (FO) 
estimation method, a FO conditional estimation method 
(FOCE), and a FO conditional estimation method with inter-
action (FOCE-I) [22] to obtain the parameters of a popula-
tion model. The process consists of three phases:
1. Initial condition estimation. The two-stage (TS) method 

[22] is applied to obtain an initial solution of the mean 
population parameters and their distribution.

2. Population parameter estimation. The population param-
eters are estimated using the FO, FOCE, or FOCE-I esti-
mation methods, starting with values from the TS stage or 
the user’s manual, as desired.

3. Post-process. The specific parameters for each individ-
ual are estimated through the population parameter dis-
tribution computed in the second stage. Also, there is the 
option of being provided by the user.
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This estimation block generates results files in .rpt or .txt for-
mat. The modeler can obtain different results of the popula-
tion parameter estimation in these files. These files could be 
connected automatically with R scripts to develop complete 
results descriptions to show estimation results graphically.

Figure 2 shows a schematic diagram of the two- 
compartment PK model that we developed. By separating 
the single compartment into two distinct containers, known 
as the “central” and the “peripheral,” we were able to account 
for distribution parameters unlike the one-compartment 

model. The central compartment represents plasma and 
highly perfused tissues, such as the kidneys and liver. The 
peripheral compartment represents the tissue space. The 
contrast agent leaves the plasma space at a rate represented 
by K

12
 (the volume transfer constant) and returns represented 

by K
21

 (the efflux constant).
This example provides open source, real observations, and 

data to validate our approach. The PK parameters were esti-
mated using the PhysPK parameter estimation module. The 
PK model is defined by simulation component relationships 

Figure 1 Workflow connection for the study implemented in PhysPK population analysis. R scripts are embedded for the automatic graph-
ical display of population data from the study results.

Figure 2 A schematic diagram of the PK model developed. The model includes a two-compartment PK model with specific and non-specific 
clearance. A) Two-compartment PK model single-dose intra-venous (IV) administration graph. B) Two-compartment PK model single-dose 
intra-venous (IV) administration PhysPK graph.
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and mathematical equations of the mechanism. The mathe-
matical equations for the components involved are shown in 
equations 1-5:
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where A
1
 and A

2
 characterize the amount of drug in the cen-

tral and peripheral compartments, respectively. The units 
for drug concentrations are microgram/milliliter (μg/ml). D

0
 

represents the administration dose. I
t
 symbolizes the infusion 

rate time (0.6 mg/min for the 10 mg/kg IV single dose and 
6.6 mg/min for the 100 mg/kg IV single dose). X

0
 represents 

the initial drug concentration after administration. X
1
 and X

2
 

denote the drug concentration in the central and peripheral 
compartments, respectively. Parameters V

1
 and V

2
 represent 

the volume of central and peripheral compartments, respec-
tively. K

10
 represents the clearance from the central compart-

ment, while K
12

 and K
21

 denote the distribution clearance 
between the central and peripheral compartments, respec-
tively. Kinetic parameters for non-linear elimination are 
characterized by K

m
 (the Michaelis constant) and V

m
 (char-

acterizes the maximum velocity achieved by the system at 
maximum [saturating] substrate concentrations).

The iterative two-stage (ITS) method is an approach to 
estimate an initial condition of population parameters for 
each individual subject without considering population 
knowledge. This approach is followed by an estimation of 
population parameters using the FOCE method, starting with 
the values obtained from ITS. With the help of the PhysPK 
parameter estimation module, end-users can estimate model 
parameter values to provide the best fit of model simulation 
to data with these estimation methods [23]. The initial values 
for the estimation methods are provided in Table 1. Finally, 
a two-compartment analysis is performed with PhysPK to 
develop precision plots.

Software

PhysPK v.2.4.1® is a software platform based on first- 
principle modeling of complex systems with continuous 
and discrete time equations. PhysPK uses the multi-object- 
oriented modelling (MOOM) paradigm and is coded using 
the EcosimPro language. The EcosimPro 6.4.0® program 
is a first-class modeling and simulation software for mod-
eling multidisciplinary continuous-discrete systems and any 
kind of system based on differential-algebraic equations 
(DAE) and discrete events. EcosimPro models can be con-
verted to algorithmic code (C++) and compiled through the 
EcosimPro platform for execution [24].

The PhysPK approach involves creating a PK model using 
mathematical equations in a PK simulation component that 
describes various processes through DAE. These equations 
are used to ensure mass conservation, as well as model pro-
cesses, such as absorption, distribution, metabolism, and 
excretion for each chemical compound within the relevant 
spatial regions of the component. The aim is to create a com-
prehensive model that can accurately simulate the pharma-
cokinetic behavior of the drug within the body [25].

R is a versatile, cross-platform, free, and open-source pro-
gramming environment that offers powerful packages for 
data management, statistical computing, and graphical pro-
duction capabilities. Version 4.2.1 of the R programming lan-
guage was used in the current study for data pre- processing 
and package implementation. The following packages were 
utilized: ggplot2 [26]; readxl [27]; rstudioapi; and this.path 
[28]. Unless otherwise specified, default parameters were 
used for each programming function.

Initial configuration of PhysPK

After PhysPK is installed, PhysPK undergoes automatic 
validation by comparing the simulation of internal models 
and studies against reference models to ensure reusability. 
Additionally, advanced verification tools are included. A 
configuration is required to run R scripts within the PhysPK 
monitor, allowing one to select the version of R to use. 
Paths in the edit tab and global options need to be config-
ured (Figure 3). Note that the version of R chosen will affect 
the libraries that can be used. The configuration process for 
linking PhysPK with R scripts requires four additional steps 
(Figure 4): I) Define the path to the R script.exe folder and 
specify the tool name to be used in the script. It is crucial to 

Table 1 Initial Conditions for the Two-Compartment Model

Variable  Estimated  Initial  Units   Min  Max
V1  TRUE  40  Milliliter/kilogram  10  200

V2  TRUE  40  Milliliter/kilogram  10  200

CL  TRUE  5  Milliliter/day/kilogram  1  30

CLd  TRUE  10  Milliliter/day/kilogram  1  100

Vm  FALSE  0  Microgram/day/kilogram  0  1200

Km  FALSE  5  Microgram/milliliter  0.01  100

V1: central volume; V2: peripheral volume; CL: central clearance; CLd: peripheral clearance; Vm: maximum velocity achieved by the system 
at maximum (saturating) substrate concentrations; Km: the Michaelis constant (kinetic parameters).
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ensure that the R script functions correctly because it will not 
display any errors if it fails. Refer to Figure 4 for detailed 
instructions on configuring the monitor. II) Design a script 
file to execute within the render options located in the same 
folder as the PhysPK experiment. III) Ensure that the output 
variables from PhysPK are saved in .csv or a similar format 
to be managed inside the R script. Specify the location where 
the R script will generate the output. IV) Define the variables 
from PhysPK that will be stored in the .csv file. For more 
information on how to use PhysPK and this new feature, refer 
to the user manual [29], which includes detailed examples.

R scripts configuration

R scripts run simultaneously with PhysPK models and 
are used to associate variables or parameters with the 

mathematical model from a .csv file, where the variables 
are saved. The .csv file should contain the complete his-
tory of each selected variable in the form of a table with 
the variable names in the header to be used by R scripts. 
The R script file must be located in the same folder as the 
PhysPK experiment. As a result, all scripts must include 
mandatory lines to connect with PhysPK parameters, as 
shown below. The this.path library is used for path han-
dling operations and to locate the script file in the PhysPK 
experiment folder. After defining the file script location, 
the main code of the script should connect with PhysPK 
outputs and generate stats, graphs, plots, and tables. The 
final lines are used to save an image created by R and dis-
play the image in the PhysPK monitor. It is also possi-
ble to develop .xml files to show additional content in the 
PhysPK monitor. Below is the entire R script code manda-
tory for any R script.

Figure 3 Screenshot showing the monitor global options inside of PhysPK settings to embed R scripts.
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Model validation

For the model optimization step, 40 maximum-likelihood 
expectation-maximization (MLEM) iterations are used. The 
two-compartment model is described using log-normal mod-
els; a combined model is applied to the residual error.

A population dataset of 1000 subjects is generated using 
Monte Carlo simulation in PhysPK. A linear two- compartment 
with intravenous administration, Michaelis-Menten periph-
eral distribution, and FO elimination is applied. Common 
values and variability of model parameters are provided in 
Table 2 for 10- and 100-mg doses. The model is character-
ized using log-normal distributions and an additive plus pro-
portional error model. Concentrations are simulated for each 
subject at 1, 2, 3, 4, 6, 12, 24, and 36 h following a single 
intravenous dose of 10 or 100 mg administered for 15 min.

The predictions of two-compartment concentrations 
via Monte Carlo simulation are com- pared to the results 

Figure 4 Screenshots showing the configuration inside of PhysPK settings to embed R scripts.

Table 2 Common Values and Variability of Model Parame-
ters for the Simulated Data

 Simulated Data Two-compartment 
Model

Dose  10 mg/ 100mg

Population  1000 subjects

Population Parameters  Ka = 0.042h − 1
Vc = 40i
Vp = 40i
Clt = 5i/h
Cld = 10i/h

Intersubject Variability  10% on Clt and VC

Residual Error  Var = (0.01 + 0.1·IPRED)2

reported by Hosseini et al. [21]. Additionally, the predictions 
of two-compartment parameters are evaluated and compared. 
The parameter values are estimated using maximum a poste-
riori (MAP) Bayesian forecasting, which is commonly used 
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in therapeutic drug monitoring (TDM). To assess the model’s 
prediction performance, we calculated the prediction error 
(PE; Eq. 6) and the mean prediction error (MPE; Eq. 7).

 (%) ·100
PRED OBS

PE
OBS

�
�  (6)

 
1

·MPE PE
n

� �  (7)

The overall predictability of the model is evaluated with 
respect to bias and precision using the conventional metrics 
of average-fold error (AFE; Eq. 8) and absolute average-fold 
error (AAFE; Eq. 9), respectively.

 10

PRED
log

OBS
nAFE

�

�  (8)

 10

PRED
log

OBS
nAAFE

�

�  (9)

If the model predictions satisfy the criteria for the AFE 
and AAFE between 0.8- and 1.25-fold, the predictive perfor-
mance is considered to be satisfactory [30, 31].

In addition, a visual predicted check (VPC) is carried out 
to assess the PK model performance based on simulations. 
To ensure consistency with the Monte Carlo simulations, 
the observed concentrations were normalized by dose and 
expressed as the standard dose used in the simulations for 
each respective dose group. The prediction intervals (PIs) 
were calculated based on a virtual population of 1000 
patients, with both 90% and 50% PIs taken into account. If 
the observed concentrations are distributed within the 90% 
PIs, the model prediction capability is deemed to be ade-
quate [32]. Then, VPC plots are generated with R based on 
the output of the simulations performed in PhysPK.

Observations of the parameter distribution may reveal 
the presence of subpopulations that can be identified by a 
binomial distribution. In R, it is possible to create a fitted 
density estimate distribution and a histogram of estimate fre-
quencies for the Bayesian estimate distribution parameters 
for each model. These types of plots enhance the informa-
tional content by displaying statistics, such as the estimated 
parameter mean, median, and range. The distribution and 
frequency plots were generated based on Monte Carlo anal-
ysis (Table 2). An example of an R script code used to obtain 
model validation results is provided below.
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Figure 5 A-F are PhysPK individual’s plots Pre prediction. Log-Con μg/ml for x axe and time in hours for y axe to obtain an initial solution of 
mean population parameters and their distributions.

Results

Dependent variable versus time 
profiles
Although PhysPK graphs, plots, and statistics are valua-
ble tools for characterizing and projecting PK for different 

dosing scenarios (Figure 5), Kamath [33] demonstrated 
the potential of R in analyzing PK data from a monoclonal 
antibody administered as a single dose. Using real data from 
Hosseini et al. [21], individual PhysPK plots are generated 
prior to prediction, with log-concentration (μg/ml) plotted 
on the x-axis and time in hours on the y-axis. The TS method 
[23] is then applied to obtain an initial solution for the mean 
population parameters and the distributions. We simulate 
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and predict multi-dose PK and population variability by fit-
ting the data to a two-compartment PK model. These find-
ings have significant implications for drug development and 
clinical use.

By connecting R with PhysPK, users can generate reliable 
graphical output using comprehensive graphical packages 
from the R programming language. PhysPK is compatible 
with any population dataset formatted according to regula-
tory requirements. Users can input data files in either .txt 
or .csv format and specify the file path to read the desired 
data file, while considering headers for typical names, such 
as subject identifier (ID), dependent variable (DV), missing 
dependent variable (MDV), and elapsed time (TIME). Users 
can also adapt these headers to their preferences in PhysPK. 

After the formatted data is read by PhysPK, users can run 
R scripts to generate population scatter and line plots (also 
called spaghetti plots) for each dose level detected in the 
dataset, as well as individual plots (Figure 6).

Plots generated by PhysPK thanks to R are widely diverse. 
Any plot combining PhysPK outputs and R features may 
be created, such as plots of the dependent variable versus 
time. The purpose of these graphs is to provide fit plots after 
estimation parameters on the PK profile shapes. Thus, this 
includes observing the density of sampling, the influence of 
the dosing history on the PK and PD profiles, non-linearity, 
potential inter-individual variability (IIV), and the number 
of points below the limit of quantitation from observed data. 
This feature for embedding R inside PhysPK may create 

Figure 6 PhysPK screenshot from monitor to spaghetti plasma concentration-time graph generated for (A) population and, (B) individuals 
with R by dose according to intravenous administration.

BIOI 2023
O

rig
in

al A
rticle



106 S. Sánchez-Herrero et al.: DOI: 10.15212/bioi-2023-0008

plots of interest using the input data file of observed data 
(.csv format) in combination with PhysPK output from sim-
ulation, estimation, or optimization analysis.

After running the model with PhysPK, R scripts are used 
to generate graphics, including spaghetti plots for each dose 
level in the dataset for the entire population and individuals 
(Figure 6).

Graph modification must done in the scripts, and involves 
adjusting linear and semi-logarithmic scales, adding hori-
zontal lines with numerical values and units, and indicating 
the number of points below the quantification limit. In addi-
tion, it is important to include additional relevant informa-
tion, such as the minimum concentration value (Cmin) and 
the corresponding time (Tmin), the maximum concentration 
value (Cmax) and the corresponding time (Tmax), as well 
as a visual representation of the time and number of doses 
(Figure 7).

There is no limit to the number of points that can be sim-
ulated by PhysPK for use in R plots. Additional information, 
such as Cmin, Tmin, Cmax, and Tmax, can also be displayed.

With PhysPK simulated data, complex and comprehen-
sive graphics and statistics can be quickly generated. The 
semi-logarithmic scale spaghetti plots reveal a biphasic dis-
tribution for PK profiles with FO absorption.

The quality of parameter estimation can be assessed by the 
standard error values of the fitted parameter estimates and 
the visual predictive checks, which are included in the fitting 
summary report (Table 3). The results of the pooled fitting 
are shown in Figure 8, and the parameter estimates for both 
pooled and group-specific fittings are listed in Table 3 with 
relatively low standard errors. The estimated value of CL is 
7.06 ± 0.32, which is consistent with the results in case study 
#1: two-compartment model fit for PK of a large molecule 
from “gPKPDSim: a SimBiology-based GUI application for 
PKPD modeling in drug development” [21], which was 6.89 
mL/kg/day. The central and peripheral compartment vol-
umes are estimated at 48.9 ± 3.66 and 33.2 ± 3.95 mL/Kg, 
respectively.

In addition, the model and parameter estimates are uti-
lized together to project the PK for an alternative dosing 
regimen and investigate the potential PK variability. The 
parameter estimates obtained from the two-compartment 
model are saved for the purpose of projecting the PK pro-
file of a 10 mg/kg (weekly dosing for 4 weeks) intravenous 
dosing regimen under various conditions (Table 4) to deter-
mine the impact of PK parameters on drug exposure. This 

determination was achieved using the simulation and popu-
lation simulation functionalities.

Figure 8 depicts the dependent variable plotted against 
time for various simulations. The function serves to pres-
ent the PK and PD profile shapes. Additionally, the func-
tion enables the observation of sampling density, dosing 
history influence on PK and PD profiles, non-linearity, 
potential IIV, and the number of points below the limit 
of quantitation. R generates these profiles from the fit-
ting simulation output .txt file obtained from PhysPK. 
The selection of the data file and format is automatically 
defined by the PhysPK fitting result. Nonetheless, users 
can create new R scripts for rendering with the PhysPK 
fitting results.

While the headers of the dataset must be adapted to the 
PhysPK files and R scripts provided, the flexibility of the 
PhysPK fitting results allows for the template to be adjusted 
to the dataset.

Goodness-of-fit

Goodness-of-fit (GOF) plots are an effective means of 
assessing model adequacy. R can generate a variety of GOF 
plots, including observations versus individual and pop-
ulation model predictions on both linear and logarithmic 
scales, standardized residual versus time, and standardized 
residual versus individual and population model predictions. 
Values are obtained from the PhysPK fitting results, but 
GOF plots and related information must be managed by R. 
For example, the title space of each plot could include the 
model name. GOF plots were used to compare the results 
from “gPKPDSim: a SimBiology-based GUI application 
for PKPD modeling in drug development” [21] (6.89 mL/
kg/day) with the results from PhysPK. Visual inspection of 

Figure 7 PhysPK screenshot from monitor to maximum and minimum plasma concentration-time stats generated with R by dose according 
to intravenous administration. (A) Cmax concentrations; (B) Cmin concentrations.

Table 3 Fitting Combined Pooled Results [21] versus 
PhysPK

Name  Initial  Fit - Group  PhysPK  Units
V1  40  49.15 ± 3.8  48.8 ± 3.66  ml/kg

V2  40  34.61 ± 5.2  33.2 ± 3.95  ml/kg

Cl  5  6.89 ± 0.2  7.06 ± 0.32  ml/day/kg

Cld  10  45.5 ± 17.4  49.04 ± 9.26  ml/day/kg
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the precision plot (observation vs. individual and population 
model prediction) indicates that the predictions obtained by 
PhysPK are acceptable compared to the reference (bottom 
panels in Figure 9).

Assessment predictions

To evaluate the accuracy of model-based predictions, 
PhysPK automatically calculates bias and precision met-
rics (AFE and AAFE respectively,). PhysPK considers pre-
dictions to be appropriate when the AFE and AAFE values 
fall between 0.8 and 1.4. The precision metrics results are 
saved in a .csv file, which is generated by R for each intrave-
nous dose administered. Figure 10 includes the population 

residual error (RES), weighted residual (WRES), percentage 
of prediction error (PE%), AFE, and AAFE.

Parameter distribution profiles

PhysPK estimates model parameters using a normal or 
log-normal distribution. The distribution of parameters is 
crucial because observing the distribution can reveal the 
presence of subpopulations. PhysPK generates individual 
Bayesian estimate distribution reports for each model param-
eter. These reports include a fitted density of estimate distri-
bution and a histogram of estimate frequencies created using 
R, which are displayed in the PhysPK monitor (Figure 11). 
Visual inspection of the plots provides information on the 

Figure 8 PhysPK screenshot from monitor to pooled fit graphs generated with R by dose according to intravenous administration, (A) 10 
mg. and (B) 100 mg.

Table 4 Estimated AUC Values for the Period of 0-28 days of a 10 μg day/mL Intravenous Dose Weekly for 4 weeks under 
Different Conditions

 Scenario  Reference AUC (0-28)  PhysPK AUC (0-28)
Simulation  CL1 = 7.06 (PhysPK result of fitting)  4162.31  4159

Simulation  CL2 = 0.5 × Cl1 = 3.53  5759.83  5690

Population Simulation  CL3 = 7.06 + 10% CV  Median = 4137.45  Median = 4065

 V1 = 48.9 + 10% CV  5-95% = 3052-5097  5-95% = 3052-5097

BIOI 2023
O

rig
in

al A
rticle



108 S. Sánchez-Herrero et al.: DOI: 10.15212/bioi-2023-0008

variability around each parameter with the shape of the den-
sity curves resembling a normal distribution, which could 
have been a better choice for this model.

The log-normal distribution was used for all the parame-
ters in this work to evaluate the distribution and density. The 
parameter distribution function of PhysPK was applied for 
this purpose, and the resulting plots were visually inspected 
both inside PhysPK and in R within PhysPK. These plots 
provide information on the variability around each parame-
ter, and suggest that a log-normal distribution is an appropri-
ate choice for this model.

Visual predictive check

To assess the effectiveness of a model’s predicted per-
formance, VPC charts can be employed. VPC plots uti-
lize a Monte Carlo simulation that considers the model 
structure, final parameter estimates, and analysis dataset. 
Unlike the results of the model estimation run, VPC plots 
are designed to enable comparisons between the distribu-
tions of the observed data from the analysis dataset and 
the  simulated data (usually a selected set of percentiles). 
PhysPK  provides percentile calculations on the simulated 

Figure 9 PhysPK screenshot from monitor to evaluate model adequacy generated with R by dose according to intravenous administration. 
(A) WResiduals versus LnConcentration, (B) WResiduals versus Time, (C) Goodness-of-fit plot and (D) Residuals versus Time.
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data, as well as the median for the observations and other 
statistical outputs. While the process to perform these 
simulations, determine the percentiles, and produce visu-
alizations can be time-consuming, PhysPK facilitates this 
process with an R connection (Figure 12). VPC plots can 

be generated in both linear and semi-logarithmic scales for 
each of the different outputs available in the data using R 
scripts.

A VPC plot was generated using a 1000-subject Monte 
Carlo simulation based on the model structure and final 

Figure 10 PhysPK screenshot from monitor to pooled Residual Error, AFE, and AFEE. Table generated with R by dose according to intra-
venous administration.
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Figure 11 PhysPK screenshot from monitor to show distribution and density from Montecarlo simulation parameters (A) Distribution of VC, 
(B) Distribution of CLt, (C) Density of Vc and (D) Density of CL.

Figure 12 PhysPK screenshot from monitor to Virtual Predicted Check (VPC) generated with R by dose according to intravenous adminis-
tration. A population dataset of 1000 subjects was generated using Monte Carlo simulation method for 10% CV in CL and V1 in linear (A-B) 
and semi-logarithmic (C-D) scales.

MLEM estimates. The VPC function of PhysPK produces 
a .txt file that contains the simulated data and the data from 
the MLEM estimation step, which includes the observations. 

The lower percentile was set to 5% and the upper percentile 
to 95%, creating a 90% prediction interval envelope. The 
VPC plot provides a description of the central tendency and 
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variability of the simulated data, which is highly representa-
tive of the observations.

Discussion

PhysPK is a robust bio-modeling software, especially valu-
able for conducting PK, PD, physiologically-based pharma-
cokinetic (PBPK), and quantitative systems pharmacology 
(QSP) simulations, and related applications applicable in 
both academic and industrial settings. PhysPK software is a 
multi-libraries M&S tool for optimization, estimation, and 
validation of PK/PD/PBPK parameters for individuals and 
populations. PhysPK software is based on first principles 
modelling of complex systems with continuous and discrete 
equations using the MOOM paradigm. PhysPK language is 
designed to model systems formulated through DAE and 
discrete events using a non-algorithmic code (a causal sim-
ulation language) and ultimately converted to an algorith-
mic code in C++ language. This modeling language sup-
ports strong model reusability, as well as connectivity with 
external hardware using object linking and embedding for 
process control (OPC), also allowing out-of-the-box execu-
tion [17]. Although the PhysPK custom and default graphs, 
plots, and statistics are generally effective for characterizing 
PK and projecting PK for other dosing scenarios, PhysPK 
may have limited capabilities in generating advanced sta-
tistical graphs and producing post-script file reports, espe-
cially when compared to programming language software, 
such as R. Nevertheless, to enhance PhysPK’s output, 
high-quality R scripts can be integrated into the PhysPK 
monitor to execute R functions for statistics, graphs, and 
reports. As an alternative approach, users can utilize the out-
put files generated by PhysPK user-friendly models after 
each simulation run and independently create desired plots 
using R scripts. This integration enables faster and more 
cost-effective assessments of the efficacy, automation, and 
safety of new drugs.

Post-processing analysis has proven highly beneficial for 
other modeling programs because post-processing analy-
sis enables modelers to concentrate on evaluating simula-
tion results rather than creating graphics. Additionally, the 
creation of diagnostic plots for each model rely heavily on 
the skill level of the user. Furthermore, optimizing popula-
tion PK/PD models can be a time-consuming process that is 
influenced by factors, such as the number of observations 
and parameters, processing power, and the software algo-
rithm used.

However, embedding R scripts in PhysPK saves time by 
automating repetitive tasks and reducing the likelihood of 
errors that can arise from manual data manipulation. The 
ability of the software to generate complex and detailed 
results automatically after simulation or optimization meth-
ods provides additional benefits to users. This seamless inte-
gration enhances the overall efficiency and reliability of the 
modeling process, making it a valuable tool for researchers 
and practitioners in the PK/PD field.

Compared to other bio-simulation software, PhysPK takes 
a different approach by embedding R scripts directly within 

the software, thus offering a more streamlined and efficient 
process. While other software may use R packages, such as 
nlmixr, saemix, RxODE, mrgsolve, mapbayr, nonmem2R, or 
Rsmlx, which are dedicated to population PK/PD modeling, 
the other software often requires two separate steps: gener-
ating the PK model; and running R scripts for simulations 
or estimations. This approach can be tedious to develop, 
manage, or understanding PK models because the approach 
involves switching between different platforms and dealing 
with PK equations in R code [34].

In contrast, PhysPK integrates R scripts into its interface, 
automating repetitive tasks and reducing the risk of errors 
associated with manual data manipulation. The ability of 
the software to generate complex and detailed results auto-
matically after simulation or optimization methods provides 
added convenience to users. In addition, PhysPK Excel or a 
Web application demonstrates how stochastic simulation in 
PhysPK can be used to explore a series of dosing regimens. 
This seamless integration enhances the overall efficiency 
and reliability of the modeling process, making PhysPK a 
valuable tool for researchers and practitioners in the PK/PD 
field.

The main advantage of using PhysPK with R is the ability 
to automatically update when input changes. As models are 
performed in PhysPK, the R computational time will not be 
utilized for stochastic simulations, which can take minutes 
or more to update the plot, thus negating the reactive benefits 
of Shiny. The results are saved from PhysPK simulations, 
reducing the results to machine instructions at run time. In 
contrast, compiled languages save the code directly to an 
executable file of machine instructions, often resulting in 
speed benefits.

Indeed, embedding R within PhysPK offers several 
advantages that set R apart from other software options in 
the market. By integrating R scripts directly into PhysPK, 
users can benefit from a user-friendly interface, population 
model, estimation, and validation modules. This seamless 
integration allows for a more streamlined workflow, making 
it easier to manage and validate custom and reusable PK/PD 
models.

Incorporated within the PhysPK software as part of the 
open source nature, there are various software options and 
applications. It is important to note that this innovative fea-
ture extends beyond the realm of R software. In fact, the 
integration of other open source software, such as Python, 
Matlab, and Julia, into the PhysPK monitor is showcased 
similar to what has been demonstrated with R.

With this integration, users can harness the strengths of 
PhysPK and R, taking advantage of the user-friendly aspects 
of PhysPK while leveraging the advanced capabilities of R 
for statistical analysis and visualization in PK/PD processes, 
including dependent variable versus time plots, GOF plots, 
post hoc fits, a posterior mean estimate distribution of model 
parameters, and VPC plots. These graphics are specifically 
designed to enhance end-user productivity by automatically 
generating diagnostic plots. This synergy empowers users to 
conduct sophisticated PK and PD studies in a more efficient, 
accurate, and reproducible manner.

The R connection with PhysPK leverages the informa-
tion contained in the output files within R to summarize and 
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display both graphical and pertinent numerical model evalu-
ation criteria on the same interface. Default scripts generated 
by the new version of PhysPK allow users without R experi-
ence to easily navigate the analysis. Additionally, advanced 
users can create their own scripts by calling the functions 
distributed in the PhysPK monitor.

Through a program-related settings file, users have the 
freedom to customize graphics according to their specific 
needs. This flexibility enables graphs to be utilized for rou-
tine model evaluation, as well as for publications or reports. 
Graph files also include embedded information, such as the 
analysis project’s date, time, and other relevant details, pro-
viding better organization for users.

PhysPK is available under license, and regular updates 
are released to continuously improve the software. These 
updates involve adding new features, enhancing existing 
functions, and fixing bugs. Future developments of PhysPK 
include the implementation of faster, easier, and more auto-
matic non-compartmental analysis. Additionally, a side pro-
ject is underway to integrate PhysPK within graphical user 
interfaces, further enhancing the user experience by simpli-
fying model management. Regular updates and information 
about PhysPK can be found on the software website and 
LinkedIn profile.

Conclusions

M&S software offers numerous benefits for modeling and 
simulating complex stochastic systems and processes. Over 
the years, PK processes have extensively relied on such soft-
ware; however, the capabilities can be significantly expanded 
by enabling bio-simulation models to interact with external 
statistical, graphics, optimization algorithms, and machine 
learning methods. For these reasons, in this study we explored 
the integration of R statistical packages with PhysPK further 
streamlining population PK/PD analysis, and simplifying 
and expediting the process. R statistical packages were uti-
lized to produce, organize, interpret, and present selected and 
comprehensive population PK/PD results. Obtaining these 
results in a single step simplifies population analysis, making 
it faster and more efficient. By embedding R scripts within 
PhysPK results/monitor, the software gains the flexibility to 
be used for routine model evaluation, as well as for publi-
cations or reports. The experimental results were compared 
with other population PK/PD analyses, confirming the utility 
of this new PhysPK feature in PK analysis. This new feature 
allows for flexible model evaluation, supports routine use, 
and facilitates publication and reporting of results.

In contrast to other software, PhysPK integrates R scripts 
into its interface, automating repetitive tasks, reducing time, 
and reducing the risk of errors associated with manual data 
manipulation. In addition, by integrating bio-simulation 
software with programming languages, such as R, new 
opportunities arise for developing advanced intelligent sim-
ulation modeling. The simulation output of PhysPK serves 
as a platform that generates clean and structured data, which 
can be effectively utilized by various algorithmic approaches 
to facilitate decision-making processes. This seamless 

integration enhances the overall efficiency and reliability of 
the modeling process, making PhysPK a valuable tool for 
researchers and practitioners in the field of PK/PD.

This connection allows for future integration of machine 
learning methods with PhysPK. This innovative feature 
will offer the potential to enhance the overall performance 
of  sampling-based non-linear model predictive controllers 
in PK. By combining first principles models with machine 
learning algorithms, it becomes possible to capture general 
trends in state variables for dynamics. Additionally, the inclu-
sion of deep neural networks allows for compensation of 
additional errors in the predicted states. This hybrid mode-
ling approach enables the use of black box machine learning 
procedures, which can be supported and trusted more reliably 
in conjunction with first principles methods, such as mecha-
nistic, semi-empirical, phenomenologic, or white box mod-
els. The utilization of machine learning methods in PK can 
significantly decrease mathematical complexity and reduce 
the time and resources required for mathematical modeling 
of the relationships between drug exposure, safety, and effi-
cacy. Machine learning predictions of drug PK can serve as 
input for PK/PD models, enabling more time-efficient anal-
ysis or training of machine learning algorithms using super-
vised or unsupervised learning techniques. This integration 
of machine learning streamlines the process and enhances the 
efficiency of PK analyses and drug development.
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