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RUNX3: A Location-oriented Genome 
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Introduction

Transcription factors are a group of proteins 
that bind to a specific sequence upstream 
of the 5’ end of a gene, thereby enabling 
the transcriptional regulation of down-
stream genes [1]. Transcription factors are 
key components in the nucleus that control 
gene expression, determine cell function, 
and the response to the environment.

As a main member of the Runt-related 
transcription factor (RUNX) family of 
transcription factors, RUNX3 is essential 
for regulating growth and development, 
and regulates the development, differen-
tiation, and maintenance of the gastric 
epithelium [2, 3], nervous system [4], 
and immune system [5–7]. The RUNX3 
N-terminus is mainly composed of the 
highly-conserved Runt homology domain 
(RHD) [8], which is the characteristic 
structure of the RUNX family and partici-
pates in the direct transcriptional regulation 
of DNA. The C-terminus is composed of 
similar transactivation domains (TADs), 
inhibitory domains (IDs), and proline- 
tyrosine (PY) and VWRPY motifs [9], but 
RUNX3 exhibits different protein interac-
tions and post-translational modifications 
than RUNX1 and RUNX2. Moreover, the 

sequence structure of RUNX3 is more 
compact and conserved [10], thus RUNX3 
is considered a unique gene in this family 
and has received much attention.

In recent years, an unusual relationship 
between RUNX3 cytoplasmic localization 
and a tumor-promoting phenotype have 
been reported [11]. Therefore, we focused 
on the impact of unusual localizations of 
the RUNX3 transcription factor in cancer 
by comparing localization in the nucleus 
and cytoplasm, and combining that infor-
mation with literature reports to determine 
the possible causes of mis-localization and 
impact on cell fate.

RUNX3 in the nucleus, 
an important regulator 
of gene homeostasis

RUNX3 was first identified in the nucleus 
[10]. As a transcription factor, RUNX3 has 
long been considered a tumor suppressor 
gene that directly or indirectly suppresses 
the expression of cancer-related genes by 
binding to DNA promoters [12] or pro-
tein–protein interactions [13, 14]. Under 
different stimulation signals, RUNX3 can 
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Abstract

Transcription factors are key components in gene expression and are associated with various diseases. Tran-
scription factors maintain the stability of gene transcription and cell function. Among the transcription fac-
tors, the Runt-related transcription factor (RUNX) family regulates growth and development in a tissue-spe-
cific manner and is involved in tumorigenesis. The function of an important member of the RUNX family, 
RUNX3, was shown to be closely related to its subcellular localization. Normally, RUNX3 promotes or 
represses gene transcription in the nucleus; however, when RUNX3 is restricted in the cytoplasm, RUNX3 
fails to function and only has a minor effect o gene expression. Hence, the risk of tumorigenesis cannot 
simply be equated with the level of RUNX3 expression, which makes the diagnosis and treatment of cancer 
more complicated. The cytoplasmic localization of RUNX3 has been shown to be associated with a variety 
of tumors. Herein we have summarized the current information on RUNX3 mis-localization and RUNX3 
promotion of tumorigenesis, thus providing new insight for future investigations to elucidate the mechanisms 
by which RUNX3 regulates tumorigenesis.
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independently or cooperatively maintain homeostasis at the 
genomic and cellular levels.

RUNX3 balances TGF-β signaling

The TGF-β signaling pathway is a characteristic signal-
ing pathway involved in cancer progression that promotes 
cell proliferation and malignant phenotype transformation 
in tumor cells, and also activates RUNX3 [2, 15]. Under 
the stimulation of TGF-β signaling, reactive-suppressor 
of mothers against decapentaplegic (R-SMAD) of the 
Smad protein family, which is anchored to the plasma 
membrane, forms heterodimeric SMAD complexes with 
cooperative SMAD (Co-Smad). The complexes bind to 
RUNX3 and transport to the nucleus together [16]. After 
reaching the nucleus, under promotion of CBF-β, the runt 
homology domain (RHD) of RUNX3 directly binds to 
the DNA promoter [17, 18], upregulates the expression 
of p21, Bim, and Claudin1 [12, 19, 20], silences Trkb, 
promotes apoptosis and inhibits tumor formation and 
progression [21–25] (Figure 1A). Moreover, RUNX3 
also inhibits the transcriptional activity of TGF-β [26], 
thus forming a negative feedback pathway to balance the 
tumor-promoting effect brought about by the upregulation 
of TGF-β [27].

RUNX3 competitively inhibits onco-
gene transcription
In addition to direct effects, RUNX3 also indirectly inhib-
its the transcriptional activity of cancer-promoting genes by 
competing for the DNA-binding sites of cancer-promoting  
factors, i.e., protein–protein interactions (PPIs). In fact, 
RUNX3 mostly affects the activity of cancer-promoting 
genes in an indirect way, blocking multiple cancer signaling 
pathways. RUNX3 inhibits the formation of the β-catenin/ 
TCF4 complex in the Wnt signaling pathway [13, 28], 

thereby blocking the transcription of Cdx2, Axin2, Cyclin 
D1, and c-Myc, and inhibiting proliferation and invasion 
[14, 29, 30] (Figure 2A, C). RUNX3 also directly binds to 
the Akt1 promoter and inhibits the Akt1/β-catenin/cyclin 
D1 signaling axis [30], blocking the Wnt signaling pathway 
in an alternative way. In addition, BMP proteins cooperate 
with RUNX3 to bind to the c-Myc promoter, thus inhibiting 
transcriptional activity [31] (Figure 2D). Similarly, RUNX3 
binds to the TEAD-YAP complex in the nucleus to form a 
YAP-TEAD-RUNX3 ternary complex in the Hippo path-
way [32, 33], which accelerates the dissociation of TEAD-
YAP; the RAC signal can even promote this process [34]. 
RUNX3 also blocks binding of TEAD-YAP to CTGF and 
CYR61, inhibiting tumor proliferation activity [33, 35–37]  
(Figure 3A).

Moreover, RUNX3 acts on the downstream target, STAT4, 
inhibits STAT5 [38] and JAK3/STAT3 signaling [39], and 
downregulates c-Myc [40–42], Bcl [43–45], and cyclin D 
[46, 47] (Figure 3B). With respect to DNA damage repair, 
RUNX3 recruits FANCD2-FANCI through the Fanconi 
anemia (FA) pathway to repair the DNA fork of interstrand 
crosslinks (ICLs) [48–50] and activates transcription of 
redox regulator heme oxygenase 1 (HO-1 or HMOX1), ame-
liorating the DNA damage caused by oxidative stress and 
thereby maintaining cellular homeostasis [47].

RUNX3 synergizes with P53 to exert 
antitumor effects
In addition to independent RUNX3-independent tumor sup-
pressor regulation, DNA damage and activation of onco-
genes (Myc and K-Ras) cause RUNX3 and p53 to exhibit 
a synergistic role [51–56]. In this context, RUNX3-p53 
forms a genome surveillance system to cooperatively reg-
ulate gene transcription activity [57]. RUNX3 simultane-
ously recruits phosphorylated ATM and p300 to activate 
p53 downstream target genes [58, 59], execute DNA dam-
age repair or promote cell cycle arrest [60], and apoptosis 

A B

Figure 1  TGFβ pathway and RUNX3 cytoplasmic retention. A. RUNX3 enters the nucleus under TGFβ signaling. RUNX3 exerts DNA bind-
ing ability with the assistance of CBFβ. After stimulation by TGFβ, R-Smad combined with Co-Smad form the Smads complex, which binds to 
RUNX3 and promotes RUNX3 nuclear translocation and transactivation. In the original state, Smads complex and P300 activate RUNX3, the 
Runt domain binds to DNA, promotes the upregulation of Bim, P21, and Claudin 1, and down-regulation of TrkB. B. Impaired TGFβ pathway 
leads to cytoplasmic retention of RUNX3. When the TGFβ signaling pathway is injured, malfunctioning of TGFβ signaling or SMAD protein 
family occurs. RUNX3 fails to bind with SMADs and is retained in the cytoplasm in an inactive state. The aforementioned dysregulation result 
in downregulation of Bim, P21, and Claudin 1, and upregulation of TrkB.
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[51, 61]. In addition, p53 inhibits the overexpression of 
RUNX3, thereby forming a stable RUNX3-p53 negative 
feedback loop [62]. Therefore, the combination of RUNX3 
and p53 is thought to be the gatekeeper and guardian of 
the genome, ensuring genomic stability. The synergistic 
effect of RUNX3 on p53, however, is destabilized by the 
p53 high mutation rate in many cancer types [63]. Mutant 
p53 (p53R175H-human/p53R172H-mouse) binds RUNX3 
and promotes Myc transcription in osteosarcomas [64]. 
In summary, the RUNX3-p53 negative feedback loop 
monitors the genome, but the stability of p53 cannot be 
overlooked.

In general, under the action of various post-translational 
modifications, RUNX3 has an important role in the regu-
latory balance between oncogenes and tumor suppressor 
genes.

Cytoplasmic localization: a 
constraint of RUNX3

RUNX3 is normally localized and functions in the nucleus, 
but recent studies have shown that RUNX3 has an unusual 
cytoplasmic localization in many tumor cell lines, which is 
also called “cytoplasmic sequestration” or “mis-localization” 
of RUNX3 [11]. The cytoplasmic localization of RUNX3 
is associated with the gastric epithelium in gastric cancer, 
suggesting a role in carcinogenesis [11, 65, 66]. Subsequent 
reports on RUNX3 mis-localization confirmed that cytoplas-
mic localization of RUNX3 is not a rare event [11], and cyto-
plasmic localization occurs in 80% of breast cancer patients 
[67]. Cytoplasmic localization of RUNX3 protein also exists 
in 46.0% and 30% of ovarian cancer and oral squamous cell 

A B

C D

Figure 2  The relationship between RUNX3 and the Wnt signaling pathway. A. Nuclear RUNX3 blocks the Wnt signaling pathway through 
“protein-protein interactions.” In the original state, TCF4 binds to β-catenin and translocates into the nucleus after Wnt signaling stimula-
tion. The Runt domain of RUNX3 binds to the DNA-binding region of TCF4 in nucleus, thus preventing the TCF4-β-catenin complex from 
binding to DNA and inhibiting the target genes (Cdx2, Axin2, CyclinD1, and c-Myc) of the Wnt signaling pathway; B. Cytoplasmic RUNX3 
fails to inhibit the Wnt signaling pathway. RUNX3 is localized in the cytoplasm in an inactive state. RUNX3 in the nucleus is absent or 
insufficient to counteract the TCF4-β-catenin complex, which subsequently binds to DNA and promotes the transcription of Cdx2, Axin2, 
CyclinD1, and c-Myc oncogenes. C. RUNX3 cooperates with the BMP family to suppress oncogenes. BMP occupies the DNA binding site 
of TCF and RUNX3 binds to the DNA binding site to jointly exert a tumor suppressor effect. D. The relationship between RUNX3 and Wnt 
signaling pathway. The Runt domain of nuclear RUNX3 combines with the DNA binding region of TCF4 to form a RUNX3-TCF4-β-cat-
enin trimer, which blocks binding of the TCF4-β-catenin complex to the target gene promoter and inhibits the target genes (Cdx2, Axin2, 
CyclinD1, and c-Myc). When RUNX3 is localized in the cytoplasm and the nucleus RUNX3 is absent or deficient, the TCF4-β-catenin 
complex smoothly binds to the promoters of target genes to promote the transcription of Cdx2, Axin2, CyclinD1, and c-Myc oncogenes. 
RUNX3 can also inhibit the effect of AKT1 on CTNNB1 (β-catenin encoding gene) and indirectly inhibits the formation of TCF4-β-catenin 
complex. BMP interacts with the TCF4-β-catenin complex and upregulates the expression of RUNX3, directly or indirectly regulating Cdx2, 
Axin2, CyclinD1, and c-Myc transcription.
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carcinoma patients [68, 69], respectively. Cytoplasmic local-
ization of RUNX3 has also been observed in colon cancer 
and is associated with tumorigenesis and metastasis [70]. 
The cytoplasmic localization of RUNX3 in lung small cell 
carcinoma is thought to lead to a higher probability of post-
operative distant metastasis and is significantly associated 
with lymph node-positive involvement and margins indi-
cating lymphatic invasion [71]. Cytoplasmic localization of 
RUNX3 greatly limits RUNX3 function, resulting in protein 
conversion to a tumor-promoting phenotype. Interestingly, 
although the three members of the RUNX family share a 
high degree of homology, only RUNX3 exhibits cytoplasmic 
localization that leads to functional differences.

Current studies suggest that the cytoplasmic sequestration 
of RUNX3 originates via two mechanisms: ① blockade of 
the RUNX3 nuclear import pathway (cytoplasmic reten-
tion); and ② abnormal activation of the nuclear RUNX3 
nuclear export signal (nuclear exclusion). We will discuss 
the impact on tumor formation from the perspective of these 
two mechanisms.

Cytoplasmic retention of RUNX3: 
RUNX3 nuclear import pathway 
dysfunction

The nuclear import of RUNX3 can be mediated in two ways: 
① TGFβ-SMAD signaling [11]; and ② DNA damage or 
proto-oncogene activation signaling [51]. TGFβ signaling is 
the initiation signal by which RUNX3 enters the nucleus to 
regulate transcription. Dysregulation of one or more mole-
cules in the TGFβ pathway upstream of RUNX3, such as 
downregulated expression of Smad4 and TGF-βI/II recep-
tors and mutation of TGF-βII receptors, may lead to plasma 
retention of RUNX3. Occupation of SMAD-binding sites 
can also lead to retention of RUNX3. This process leads 

to the continuous activation of intracellular TGF-β-SMAD 
signaling without negative feedback inhibition, stimu-
lates cell proliferation, and induces tumorigenesis [11, 67] 
(Figure 1B). In addition, RUNX3 can also rapidly enter the 
nucleus and co-localize with p53 under the stimulation of 
DNA damage or proto-oncogene activation [51]. Given that 
RUNX proteins rely on nuclear localization signals (NLSs) 
[72] and nuclear matrix targeting signal (NMTS) sequences 
for nuclear import [73–75], cytoplasmic retention could be 
related to inactivation of these two nuclear import-related 
signals. The absence of effective repair methods after DNA 
damage makes it possible for the aggravation of abnormal 
DNA mutations and the occurrence of tumor signals [53, 64, 
76, 77].

Nuclear exclusion of RUNX3: 
aberrant activation of nuclear 
export signaling

RUNX3, which is localized in the nucleus, can also be 
exported to the cytoplasm. After being exported, RUNX3 
loses tumor suppressor regulatory function and DNA dam-
age monitoring, and indirectly promotes tumorigenesis.

This nuclear export program is activated by phospho-
rylation- or ubiquitination-modifying enzymes or other 
types of molecules. Specifically, abnormal phosphorylation 
of RUNX3 is one of the main triggers of nuclear exporta-
tion, and this process can be mediated by phosphokinases, 
such as the Src kinase family [65, 78], Pak1 [79, 80], and 
Pim-1 [81, 82]. Histone deacetylase (HDAC) produced 
by oxidative stress or the Cag. oncoprotein produced by 
Helicobacter pylori (H.p.), can increase the level of Src in 
cells [70]. Src phosphorylates multiple tyrosine residues on 
the surface of the RHD of RUNX3, initiating the RUNX3 
nuclear export program [65]. Subsequently, chromosome 

A B

Figure 3  RUNX3 competitively inhibits oncogene transcription. A. RUNX3 inhibits the Hippo pathway. The TEAD-YAP complex of the Hippo 
signaling pathway promotes the transcription of the oncogenes, CTGF and CYR61, and promotes cancer progression. Nuclear NRUNX3 
directly binds to YAP, thus preventing the formation of the TEAD-YAP complex, and forming a triple complex with TEAD-YAP for degradation. 
When RAC-TRIO is downregulated, the downstream LAST1/2 renders YAP more likely to interact with RUNX3 by phosphorylating YAP and 
prevents the formation of TEAD-YAP. B. Relationship between RUNX3 and the STAT family. STAT4 upregulates the expression of RUNX3. 
RUNX3 inhibits the promoting effect of STAT3 and STAT5 on c-Myc, Bcl, and Cyclin D.
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region maintenance protein 1 (CRM1) binds the RUNX3-
containing nuclear export signal (NES) to the nuclear pore 
complex and mediates nuclear export [83, 84] (Figure 4).

Thus, tyrosine-phosphorylated RUNX3 is mainly pres-
ent in the cytoplasm, while non-tyrosine-phosphorylated 
RUNX3 is present in the nucleus [85]. In addition, the Src 
kinase family members, Fyn and Lck, are also able to phos-
phorylate RUNX3, which shows that this family has multi-
ple roles in RUNX3 nuclear export [65]. Moreover, Pak1 and 
PIM-1 kinases also promote the nuclear export of RUNX3 in 
a similar manner. The three phosphorylation sites are located 
on the surface of the RHD [80, 81]. Moreover, the nuclear 
export of ubiquitinated RUNX3 is mediated by MDM2. The 
acidic domain of MDM2 directly ubiquitinates lys94 and 
lys148 of the RHD of RUNX3 [52] (Figure 4).

Furthermore, the Jab1/CSN protein complex is also respon-
sible for the nuclear export and degradation of RUNX3. 
Jun activation domain-binding protein 1 (Jab1) binds to 
RUNX3 through the MPN domain and initiates complex 
nuclear export via the NES of Jab1 [86]. The Mpr1p Pad1p 
N-terminal (MPN) domain of Jab1 has a role in the physical 
interaction between RUNX3 and Jab1, while the NES is the 
receptor of the CRM1 export substrate. Moreover, the COP9 
signalosome complex (CSN complex) is regulated by CSN-
associated kinases that degrade RUNX3 via the proteasomal 
pathway [86, 87].

Prospects

As a tumor suppressor in the RUNX family, RUNX3 attenu-
ates multiple oncogenic signals. Restoring RUNX3 activity 
in nuclear RUNX3-negative cells significantly reverses the 
tumor phenotype [79, 88], suggesting that remobilization of 
cytoplasmic RUNX3 into the nucleus or restoring the level 
of nuclear RUNX3 expression exogenously may be a possi-
ble therapeutic strategy for the treatment of cancer.

It is worth mentioning that among the many mechanisms 
of protein dysregulation, only cytoplasmic localization 
causes a functional restriction through a change in the spa-
tial physical position, rather than the common mechanism 
underlying changes in protein levels. Simply overexpressing 
RUNX3 to reverse the tumor phenotype will not completely 
overcome this challenge. This RUNX3 mislocalization 
undoubtedly increases the complexity of tumor progres-
sion and the difficulty of diagnosis and treatment. Overall, 
cytoplasmic localization of RUNX3 promotes oncogenesis. 
Thus, it is necessary to pay more attention to this unconven-
tional phenomenon.
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Figure 4  The mechanisms underlying RUNX3 nuclear exportation. A. Src kinase phosphorylates the tyrosine residues of the Runt domain of 
RUNX 3, promoting RUNX3 nuclear exportation. Scr kinase can be induced by Helicobacter pylori (H.p.) and HDACs. B. Pak1 phosphorylates 
the serine and threonine sites of the Runt domain to promote inactivation of RUNX3 after nuclear exportation. The discovered RMR peptide 
competitively inhibits Pak1 and restores RUNX3 activity and nuclear localization. C. PIM-1 shuttles between the cytoplasmic and nucleus. 
PIM-1 phosphorylates and inactivates of RUNX3 after nuclear exportation. This process can be reversed by LMB, the Pim-1 inhibitor. D. The 
acidic domain of MDM2 interacts directly with Runt, and the RING finger domain of MDM2 is the active region for ubiquitination. After ubiquit-
ination on the surface of the Runt domain, RUNX3 is exported from the nucleus and degraded by the proteasome.
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