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Introduction

In vitro fertilization and embryo trans-
fer (IVF-ET) is one of the most common 
assisted reproductive techniques currently 
utilized, and serial follicle monitoring 
has important clinical significance during 
treatment [1, 2]. Serial assessments of fol-
licle diameters have been tested to deter-
mine the time for oocyte retrieval during 
assisted reproductive techniques [3]. In 
clinical practice, a two-dimensional (2D) 

transvaginal ultrasound examination is the 
primary technique used to measure ovar-
ian follicle diameter. Two-dimensional 
transvaginal ultrasound follicle monitoring 
allows clinicians to determine the number, 
diameter, and development of follicles; 
however, 2D transvaginal ultrasound folli-
cle monitoring is subject to high inter- and 
intra-observer variability [4, 5]. Less expe-
rienced sonographers are at a greater risk of 
misdiagnosis, which increases the number 
of false positives [6, 7]. Follicle diameter 
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Abstract

Background: A two-dimensional (2D) ultrasound examination is the primary technique for follicle moni-
toring, but 2D ultrasound follicle monitoring has significant inter- and intra-observer variability in the meas-
urement of follicle diameter. The aim of this study was to propose a novel deep learning-based automated 
model for accurate 2D ultrasound follicle monitoring and validate the reliability and repeatability in clinical 
practice.
Methods: A prospective trial including 300 infertile women undergoing ovulation induction (single follicle 
cycles) or controlled ovarian hyperstimulation (multiple follicle cycles) was conducted in the reproductive 
center. After 2D ultrasound image acquisition, the mean diameter of each targeted follicle was measured 
using an automated model, experts, and a novice. Designating the expert assessment as the gold standard, 
the reliability and repeatability of the automated model for single and multiple follicle cycles were evaluated 
using the intraclass correlation coefficient and Bland-Altman plots.
Results: A total of 228 and 1065 follicles from single and multiple follicle cycles, respectively, were 
included. The accurate recognition rate of follicle boundaries using the automated model was 0.931. The 
inter-observer variability of follicle mean diameter measurements in single and multiple follicle cycles were 
0.970 and 0.984 for the automated model and experts, and 0.965 and 0.978 for a novice and experts, respec-
tively. Bland-Altman plots showed that 95% limits of agreement for follicle diameter measurement between 
the automated model and experts (−2.02 to 2.39 mm and −0.68 to 1.50 mm) was lower than a novice and 
experts (−1.69 to 2.74 mm and −0.58 to 1.73 mm) for both single and multiple follicle cycles. The intraclass 
correlation (ICC) of follicle diameters ≥10 mm calculated by the automated model was significantly higher 
than follicle diameters <10 mm in multiple follicle cycles (0.834 vs. 0.609). There were no significant differ-
ences between the two groups in single follicle cycles (0.967 vs. 0.970).
Conclusion: A deep learning-based automated model provides an accurate and fast approach for novices to 
improve the reliability and receptivity of 2D ultrasound follicle monitoring, especially in multiple follicle 
cycles and for follicles with a mean diameter ≥ 10 mm.
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Significance statement

A 2D ultrasound examination is the primary technique for follicle monitoring, but 2D ultrasound follicle 
monitoring has significant inter- and intra-observer variability. In this study we proposed a novel deep learn-
ing-based automated model for accurate 2D ultrasound follicle monitoring. Our results suggest that the pro-
posed method provides an accurate and fast approach for novices to improve the reliability and receptivity 
for 2D ultrasound follicle monitoring in clinical practice, especially in multiple follicle cycles.
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measurement is highly heterogeneous, thus IVF-ET treat-
ment results can vary [8]. In addition, with the age of infer-
tility onset becoming progressively younger, the workload of 
sonographers has increased significantly and the excessive 
workload often leads to measurement errors, missed diagno-
ses, and other adverse conditions.

Automated and accurate measurements of ovarian fol-
licle diameters are important. Thus, the use of automated 
ultrasound software to improve the precision of diameter 
measurements has garnered increased attention. As early 
as 1997, researchers proposed intelligent algorithms for the 
automated detection of follicles with a recognition rate of 
approximately 70% [9]. Then, some studies that focused on 
the recognition of follicles through enhanced algorithms to 
improve the follicle recognition rate were reported [10, 11]. 
In addition, intelligent algorithms were not only used for the 
automated detection of follicles, but also for estimation of 
the size of follicles and ovarian classification [12, 13]. With 
the rapid development of intelligent algorithms, research on 
automated detection and measurement of follicles are on the 
rise. These studies showed that intelligent algorithms help 
in the detection and measurement of follicle development 
of patients to assist clinicians in making medical decisions. 
Due to advances technology, an ultrasound-based comput-
er-aided diagnosis system based on ultrasound image anal-
ysis techniques has been developed and introduced to com-
mercially-available ultrasound machines [14–16]. Artificial 
intelligence (AI)-assisted ultrasound software can assess 
multimodal data and provide objective measurements, which 
can improve the ultrasound clinical workflow and reduce 
workload. Currently, the clinical utility of software has 
been evaluated in some studies of female fertility, such as 
SonoAVC (GE Healthcare, Zipf, Austria) and Virtual Organ 
Computer-aided Analysis (GE Healthcare, Zipf, Austria). 
There is no consensus on the measurement effect of these 
software algorithms. Time-consuming, complicated, opera-
tions and decreased accuracy are still problems which limit 
the clinical application of software algorithms [17, 18]. In 
this study, we introduced an automated model based on deep 
learning for fast and precise 2D ultrasound follicle monitor-
ing, and evaluate the accuracy, repeatability, and reliability 
in clinical practice.

Materials and methods

Patients

Infertility female patients who underwent ovulation induc-
tion or IVF treatment in the reproductive center from 
January–August 2020 were prospectively recruited. The 
inclusion criteria were as follows: (i) both ovaries present; 
and (ii) no severe reproductive or systemic illnesses. The 
exclusion criteria were as follows: (i) incomplete infor-
mation or images; and (ii) abnormal ovarian mass > 3 cm 
in diameter. The patients undergoing ovulation induction, 
who were considered to undergo single follicle cycles, 
received 50–100 mg of clomiphene citrate on days 5–9. 
Women undergoing controlled ovarian hyperstimulation 
(COH) before IVF, who were considered to undergo mul-
tiple follicle cycles, were treated using the long, antagonist, 
or mini-stimulation protocol. The gonadotropin-releasing 
hormone (GnRH) antagonist was continued until the day of 
human chorionic gonadotropin (hCG) administration. This 
study was conducted in strict accordance with the ethical 
guidelines of the Declaration of Helsinki. Ethical approval 
was granted by the local Ethics Committee, and each patient 
was informed about the aim of the present study and signed 
an informed consent prior to ultrasound examination.

Ultrasound examinations

All ultrasound examinations were performed using Acclarix 
LX9 (Edan Medical, Shenzhen, China) with a 3.0∼10.0 MHz 
E10-3HQ probe. Examinations and ultrasound image collec-
tion were performed by two experts who had 8 years of clin-
ical experience in the evaluation of gynecologic ultrasound 
data. The boundary of each targeted follicle was clearly vis-
ualized during image acquisition. The mean diameter of the 
follicles was calculated by measuring the vertical lines on the 
plane of maximum area (Figure 1). During the ultrasound 
monitoring of single follicle cycles, 5–10 ultrasound images 
of the leading follicle were collected from each cycle before 
ovulation, whereas 20–36 follicle ultrasound images were 

Figure 1 Mean diameter measurements for different follicle shapes. A. Trapezoid; B. Ellipse; C. Square; D. Semicircle; E. Crescent;  
F. Triangle.
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randomly collected from each multiple follicle cycle before 
oocyte retrieval. The images were exported to an external 
computer in a JPG file and digital imaging and communica-
tions in medicine (DICOM) format.

Statistical analysis

Statistical analysis was performed with SPSS version 25.0 
and MedCalc version 20.2. Quantitative data are presented 
as the mean ± standard deviation. Kappa analysis was used 
to detect differences between the experts. The follicle border 
segmentation result evaluated by experts was regarded as the 
gold standard; only the consistency of the two experts was 
stable. Bland-Altman plots were used to assess the agree-
ment between automated software, novices, and experts. The 
maximum allowed difference between methods was set at 
2 mm. ICCs and 95% confidence intervals (CIs) were used 
to assess inter-observer repeatability of ovarian follicle dia-
meter measurements. Repeatability was defined as the con-
sistency between repeated ovarian follicle diameters. A P 
<0.05 was considered statistically significant.

Model establishment and validation

We introduced a cascaded, fine-grained boundary rendering 
scheme to address the challenges for follicle and ovary seg-
mentation raised by the ambiguous boundaries in ultrasound 
images. This scheme selectively identified and refined the 
pixels with high uncertainty around the boundary. The pixels 
with predicted probabilities of approximately 0.5 were iden-
tified as the candidates to be refined. The refinement was 
then performed by rendering the uncertain predictions based 
on the fine-grained feature representations, which were 
re-encoded from the feature activations of Unet. The re-en-
coding block consisted of two convolutional layers and a 
lightweight multi-layer perceptron as the prediction head. To 
determine the context of information and better address the 
over- and under-segmentation problems, we proposed to fur-
ther implant the rendering module into a cascaded scheme. 
Within the cascade, several deep neural networks were 
stacked stage-by-stage for enhancement of segmentation 

performance. To further the use of the deep learning model 
in clinical practice, we packed the algorithm into automated 
software. Clinical validation was used to evaluate the value 
of automated software. The software was loaded onto the 
ultrasound equipment, and automatic follicle mean diameter 
measurements were performed in each patient (Figure 2). 
Assessment of accuracy, reliability, and repeatability were 
performed by two experts with 8 years of ultrasound follicle 
monitoring experience and 1 novice with 1.5 years of ultra-
sound follicle monitoring experience.

Results

Patient characteristics

Fifty-eight patients undergoing multiple follicle cycles were 
excluded from the study; 40 patients have incomplete infor-
mation or images and 18 patients had cysts or abnormal 
ovarian masses > 3 cm in diameter during monitoring. Three 
hundred infertility patients, including 130 undergoing single 
follicle cycles and 170 undergoing multiple follicle cycles, 
who agreed to participate in this study. In the final dataset, 
there were 228 follicle samples in the single follicle cycle 
group and 1065 follicle samples in the multiple follicle cycle 
group. Table 1 shows the baseline characteristics of the two 
groups. There were no significant differences in age, weight, 
height, and body mass index between the two groups (P > 
0.05).

Figure 2 Operating interface of the automated modal. Blue line: ovarian segmentation and measurement; Orange line: follicular segmen-
tation and measurement.

Table 1 Baseline Characteristics of the Patients in Single 
and Multiple Follicle Cycles

Characteristics  Multiple Follicle 
Cycles

 Single Follicle 
Cycles

 P Value

Age (year)  31.3 ± 4.4  32.2 ± 5.1  0.236

Weight (kg)  54.1 ± 7.5  55.4 ± 9.6  0.336

Height (cm)  157.8 ± 4.7  158.0 ± 5.7  0.805

BMI (kg/m2)  21.7 ± 2.8  22.2 ± 3.7  0.340

Values were presented as the mean ± standard deviation. 
BMI: body mass index. P < 0.05 was considered a statistically 
significant difference.
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Gold standard and model 
performance
Kappa analysis showed good consistency between the two 
experts in assessment of follicle border segmentation with 
a kappa value of 0.790. The accuracy of follicle boundary 
recognition by the automated model reached 0.931. The 
reliability of follicle diameter measurements estimated by 
calculation of the ICC is shown in Table 2. Compared with 
the novice, the automated model had a higher ICC in mean 
diameter measurements during single and multiple follicle 
cycles. According to the 95% limits of agreement, there were 
no significant differences between the ICCs.

There was no inter- or intra-observer variation for the 
automated model because the model always outputs the 

same segmentation result. Bland-Altman plots were used to 
estimate the repeatability of mean follicle diameter meas-
urements obtained by the automated model, the novice, and 
experts (Figure 3). The 95% limits of agreement between 
the automated model and experts (−2.02 to 2.39 mm) was 
lower than the novice (−1.69 to 2.74 mm) in single follicle 
cycles. The mean difference values were 0.19 mm and 0.52 
mm, respectively. The 95% limits of agreement between 
the automated modal and experts (−0.68 to 1.50 mm) was 
lower than the novice and experts (−0.58 to 1.73 mm) in 
multiple follicle cycles, and the mean difference values were 
0.41 mm and 0.57 mm for the automated model and novice, 
respectively.

The criterion for a higher fertilization rate was a mean fol-
licle diameter > 10 mm. In this study, reliability of follicular 

Table 2 Reliability of Follicle Mean Diameter Measured by a Novice and Automated Model in Single and Multiple Follicle 
Cycles

 
 

Multiple Follicle Cycle  
 

Single Follicle Cycle
ICC  95% CI  P Value ICC  95% CI  P Value

Automated model vs. expert  0.984  0.945–0.993  <0.001  0.970  0.961–0.977  <0.001

Novice vs. expert  0.963  0.896–0.981  <0.001  0.965  0.937–0.978  <0.001

Figure 3 Bland-Altman plots for assessment of repeatability in mean diameter measurements. Plots represent the difference between 
observers’ measurements and mean measurements. The top and bottom lines show the 95% limits of agreement; the middle line shows the 
mean difference. A and C. single follicle cycles; B and D. multiple follicle cycles.

Table 3 Reliability of a Follicle Mean Diameter Greater than or Less than 10 mm Estimated by an Automated Model in 
Single and Multiple Follicle Cycles

 
 

Multiple Follicle Cycle  
 

Single Follicle Cycle
ICC  95%  P Value ICC  95%  P Value

Follicle diameter ≥10 mm  0.970  0.829–0.998  <0.001  0.967  0.796–0.988  <0.001

Follicle diameter <10 mm  0.609  0.352–0.754  <0.001  0.834  0.114–0.946  <0.001
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mean diameter (measured by automated model) greater than 
or less than 10mm estimated by calculation of the ICC, 
were 0.967 and 0.834 in single follicular cycles, 0.970 and 
0.609 in multiple follicular cycles, respectively (Table 3). 
ICC value of follicular diameter ≥10 mm calculated by auto-
mated model was significantly higher than measurement of 
follicular diameter <10 mm in multiple follicular cycles. In 
single follicular cycles, there were no significant differences 
between the two groups.

Discussion

Ultrasound is an essential and common approach to monitor 
the development of follicles in the treatment of infertility. 
Given the significant time required for the measurement of 
ovarian follicle diameter and variability between different 
clinicians, AI-assisted technology for monitoring follicles is 
necessary [19].  In this study we have introduced and val-
idated a novel deep learning-based automated model for 
fast and accurate segmentation of follicles on 2D ultrasound 
images. We showed that this automated model improved 
follicle boundary recognition and achieved higher repeata-
bility and reliability, especially in multiple follicle cycles of 
patients undergoing COH treatment before IVF.

Currently, measurement of the mean follicle diameter 
on 2D ultrasound images remains the preferred method to 
assess follicle size [5]. This method still faces the problem of 
insufficient standardization; thus, there are significant differ-
ences between follicle diameter measurements [20]. Earlier 
studies constructed models to recognize and measure the 
follicle [21] that are less time-consuming than manual meas-
urement, especially for irregularly-shaped follicles [22]. One 
challenge in AI-assisted ultrasound follicle monitoring is to 
achieve better clinical applicability. Although previous stud-
ies have improved the efficiency of follicle recognition and 
measurement by enhancing existing algorithms or applying 
new algorithms, the majority of these methods are still in 
preclinical studies [23]. In our previous study, we proposed 
a deep learning-based algorithm of CR-Unet for follicle seg-
mentation in which the dice similarity coefficients (DSCs) 
reached 0.858 [24]. In the present study the results of ICC 
and Bland-Altman analyses indicated that the variation 
between the automated model and expert measurements 
was less than the variation between the novice and expert 
measurements. The automated model provides a potential 
approach to improve the accuracy of follicle monitoring, 
especially for novices and areas lacking medical resources. 
Our findings are similar to the previous studies [25, 26]. This 
is the first study to validate a deep learning-based follicle 
monitoring model performed on 2D ultrasound equipment 
in clinical practice.

One of the common problems of AI-assisted algorithms 
is the clinical application efficiency is lower than the lab-
oratory efficiency. Because industrialization is the final 
goal, the integration among multiple domains and indus-
tries is of great significance [27]. In this prospective pilot 

study, we determined whether an automated model based on 
a deep learning algorithm could be used to fulfill the clini-
cal demand. This study showed that automated software has 
achieved a high rate (> 0.90) on the boundary recognition 
of follicles. We reviewed the dataset and showed that the 
boundary recognition of 31 multiple and 3 single cycles 
were incorrect using the automated model. The main reason 
for this finding was poor image quality, in which the bound-
aries of the follicles were not clearly recognized.

In studies addressing the impact of follicle monitoring on 
fertility outcome, it was reported that the fertilization rate 
increases when the follicular diameter is > 10 mm, and this 
criterion is also regarded as predicting mature oocytes in 
ultrasound follicle monitoring [28]. In the current study we 
drew the follicle samples in two groups based on a mean 
follicle diameter greater than or less than 10 mm, and fur-
ther estimated the reliability of measurement obtained by the 
automated model in both single and multiple follicle cycles. 
Interestingly, we found that the automated model was condu-
cive to follicle diameter measurement which was ≥ 10 mm. 
The accurate measurement rate of follicles in multiple fol-
licle cycles was higher than single follicle cycles because 
the boundary of the follicle diameter ≥ 10 mm is more dis-
tinct. It was noted that automated software had inferior per-
formance in follicle diameters < 10 mm in multiple follicle 
cycles. Follicle overcrowding can cause follicle compression 
and elongation in one plane, and errors in the measurement 
of diameters will be exacerbated because of confusion and 
subjectivity of 2D diameter measurements of follicles in 
multiple follicle development during COH cycles [29]. In 
the early stage of follicle development in multiple follicle 
cycles the emphasis of an AI-assisted model of ultrasound 
follicle monitoring should be follicle counting, while during 
the late stage of follicle development, it should be the precise 
segmentation of follicles ≥ 10 mm.

There were some limitations in our study. The model was 
verified in a single center, rather than in a multi-center set-
ting. In addition, the image quality was not quantitatively 
evaluated. Because the automated model was proved to be 
more applicable to follicles ≥ 10 mm, the performance of 
deep learning-based segmentation in small follicle tracking 
and counting was not considered. Continuous improvement 
of the algorithm will be performed in our corollary studies.

Conclusion

An automated model for 2D ultrasound follicle monitoring, 
which avoids inter- or intra-observer variation, provides 
a reliable technique for the novice to improve monitoring 
accuracy, feasibility, and repeatability, especially in multiple 
follicle cycles. The automated model for 2D ultrasound fol-
licle monitoring belongs to a class of automated systems that 
may be useful for ensuring consistency of repeated ovarian 
follicle diameter measurements, standardize measurement 
criteria for large cohort studies, and improve the quality of 
data collection.
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