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Current Applications of  
Organ-on-a-Chip: A Step  
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Introduction

Patients with cancer show substantial 
inter-patient variability arising from dif-
ferences in therapeutic by-products, prog-
nosis, reactivity, or tolerance to treatments 
[1]. Consequently, predictive preclinical 
studies capable of identifying optimal 
therapy regimens for particular patients 
are increasingly in demand. This tailored 
strategy has the potential to augment the 
positive response to therapy while decreas-
ing the frequency of adverse effects [2, 
3]. The responsiveness to chemotherapy 
regimens is determined by the molecu-
lar subgroups of the tumors, the stage of 
cancer, the presence of comorbidities, 
genetic history, and patient susceptibility 
to treatments, which vary greatly among 
individuals. One successful method for 
developing tailored therapy involves 
duplicating illness in laboratory settings 
by using three- dimensional (3D) cellular 
models associated with patient-derived 
tumors after debulking  surgery, and sub-
sequently evaluating alternative treatment 

options for the unique cancer phenotype. 
Although this method can be used to assess 
treatment efficacy, it may fail to indicate 
unfavorable and off-target effects. The 
precision medicine paradigm does not rely 
on a “one-size-fits-all” model but instead 
uses unique treatment strategies for each 
individual; this paradigm cannot always be 
applied in traditional and generic in vivo 
and in vitro conditions. The development 
of tailored chemotherapeutic treatment 
programs is facilitated by advances in pre-
cision medicine through cell-based tumor 
organoids and xenografts derived from 
plants [4]. Research advances have pro-
moted the use of bioprinting for antitumor 
drug screening through manufacturing 
of physiologically relevant 3D cancer or 
tumor models, thereby offering a platform 
presenting more stringently controlled 
environments and physiologically suita-
ble models [5]. Herein, recent advances in 
organs-on-a-chip for various major organs 
are summarized, and their applicability in 
many diagnostic and research areas in the 
field of oncology is discussed.
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Abstract

In the pharmaceutical industry, a critical need exists for effective drug development approaches that better 
account for factors imposed by the physiological microenvironment. Organ-on-a-chip (OOAC)—a revo-
lutionary technology that simulates human organs’ physiological milieu and performance on a chip—has 
applications in curing illnesses and drug screening, and enormous potential to transform the drug discovery 
 workflow. However, the effective integration of this unique engineering system into ordinary pharmacolog-
ical and medical contexts remains in development. This Editorial summarizes current research on OOAC 
systems, and offers insight into future development prospects and the need for a next-generation OOAC 
framework.
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Currently available  
organ-on-a-chip systems:  
an overview

Liver

The hepatic organs are the primary loci of drug/toxin metab-
olism. The liver is made up of several complicated hepatic 
lobules that allow for multicellular functional interaction 
[6]. Hepatocyte physiology cannot easily be sustained for 
long durations [7]. Kane et al. devised the first liver-based 
model by using microfluidic perforations that constituted 
co-cultured 3T3-J2 fibroblasts and rat liver cells, which imi-
tated an airway interface [8]. Rat hepatocytes cultivated on 
the chip were able to produce albumin and engage in met-
abolic activity indefinitely. Lee et al. [9] have designed a 
chip replicating the interstitial morphology of endothelial 
cells and cultivated primary hepatocytes, wherein culture 
medium infused extrinsic to the gap. Electrophoretically 
generated radial electric field gradients have been used by 
Ho et al. [10] to position cells on round polydimethylsilox-
ane (PDMS) chips, thus conferring the biomimic with pro-
grammable and directed cell localization capabilities. These 
innovative approaches replicate the anatomy of the hepatic 
lobule. Hegde et al. [11] have demonstrated an approach 
wherein a double-layered chip with a perforated polyeth-
ylene terephthalate layer splits the channels from continu-
ously perfused collagen and fibronectin-polished rat primary 
hepatocytes in the bottom channel via the top chamber. Ma 
et al. [12] have created a biomimetic platform for in situ cir-
culation of hepatic spheroids. Riahi et al. [13] have devel-
oped microfluidic electrochemical chip immunosensors to 
identify hepatotoxicity-derived biomarkers. Chong et al. 
[14] have developed tests to track drug surface sensitization 
by measuring metabolite synthesis and antigen- presenting-
cell stimulation. This technology may potentially be used 
as a drug testing platform to identify chemicals that cause 
systemic skin hypersensitivity. Lu et al. [15] have used the 
integration of decellularized liver matrixes and gelatin meth-
acryloyl to develop biomimetic liver tumors mimicking the 
3D tumor milieu. This technology provides a disease model 
with enhanced precision for future anti-cancer pharmaceuti-
cal investigations (Figure 1).

Lung

The alveoli govern gaseous exchange in the lungs. Cellular 
constructs are often challenging to replicate in vivo. 
Through precise liquid flow and continuous gaseous 
exchange, microfluidics may generate extracorporeal lung 
models of lung diseases. Huh et al. have used soft lithogra-
phy to create a lung-on-a-chip model [16] by dividing the 
chip into zones split by 10 m PDMS sheaths containing an 

extracellular matrix. The upper PDMS sections contained 
alveolar epithelial cells, whereas the bottom areas contained 
human pulmonary microvascular endothelial cells, thereby 
replicating the alveolar-capillary obstacle. The membrane 
architectures were modulated under vacuum conditions to 
replicate the expansion and contraction of the alveoli dur-
ing respiration [17]. In 2015, Stucki et al. [18] described 
a lung chip resembling the lung parenchyma. The model 
incorporated an alveolar shield and 3D cyclic strain to rep-
licate respiration, and thus was the first-ever elastic mem-
brane expansion model. Blume et al. [19] have created 3D 
airway culture prototypes that replicate pulmonary inter-
stitial flow by initiating the inter-transmission of fluid and 
media. These prototypes have enabled detailed physiolog-
ical examination of the epithelial layer. The device uses a 
porous filter as a chamber of single tissue culture; numer-
ous chambers can be combined for enhanced integration. 
Peng et al. [20] have created lung assist devices to allow for 
increased gaseous exchange in the placenta in the event of 
respiratory arrest in preterm neonates. Large-diameter chan-
nels are created in the umbilical arteries and veins, thus pro-
viding substantial extracorporeal blood supply to the lung 
assist devices. Dabaghi et al. [21] have used dual-sided gas 
delivery to microfabricate microfluidic blood oxygenators 
for enhanced gaseous exchange, which have demonstrated 
343% greater oxygen consumption than that in single-sided 
systems [22] (Figure 1).

Heart

Because the myocardium is a crucial part of the heart, car-
diomyocyte (CM) pulsing can be used for direct monitor-
ing of medication responses [23]. Grosberg et al. created 
an elastic PDMS membrane with surface roughness in 
2012 and transplanted neonatal rat CMs onto the mem-
brane to construct muscle membranes [24]. Later, in 2013, 
Zhang et al. used hydrogels to create self-assembled car-
diac sheets in a PDMS model [25]. The CMs were created 
by separating distinctive myocardium. The technique was 
used to create micro-organ tissue chips enabling the cou-
pling of cardiac and vascular systems [26]. The vascular 
endothelial cells in this model were used to build vascular  
networks in combination with CMs to bridge the  
vascular network void. Zhang et al. have introduced 
a heart-on-a-chip device using high-speed impedance 
detection to assess cardiac drug efficacy [27]. The device 
records the contraction of CMs to reveal drug effects. The 
chip enables preliminary evaluation of a drug’s cardiac 
effectiveness. A cardiac organ platform replicating the 
physiological and mechanical conditions of CMs has also 
been created [28]. This platform enables direct visualiza-
tion and statistical analysis, which are not possible with 
conventional cell culture or animal models. This platform 
heralded a breakthrough in the field by providing standard 
functioning 3D heart replicas. Schneider created simple 
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systematic chips based on human-derived pluripotent 
stem cells to grow cardiac tissue in a confined space [29] 
(Figure 1).

Intestine

To model the intestinal tract, Imura et al. [30] have created 
chips comprising a membrane with glass slide permeabil-
ity and a PDMS sheet with channels to grow Caco-2 cells. 
Sung et al. have created the first 3D hydrogel construct 
imitating human intestinal villi [31], and Kim et al. have 
developed bionic equipment [32]. The intestine’s milieu 
was recapitulated by using shear force and cyclic stresses. 
Caco-2 cells have been shown to exhibit sustained pro-
liferation and to aid in retention of the microbial flora in 
the human gut. The intestine’s complicated composition 
and function provide a platform for drug testing as well 
as research on the involvement of the intestinal microbi-
ota, inflammatory cells, and peristalsis-based mechanical 
distortion during intestinal illness [33]. Intestinal cells 
may be cultured alone or with endothelial cells, including 
HUVECs [32]. Because of low genome fidelity, the chips 
imitate functions of the intestine. Through integration of 
intestinal tissue engineering [34] and organ-on-a-chip tech-
nology, Kasendra et al. [35] have created in vitro biological 
replicas of the human duodenum. Endoscopic biopsies or 
organ surgeries were used to grow intestinal epithelial cells 
in the chip. This chip provides the closest available approx-
imation to a live duodenum and replicates essential aspects 
of the small intestine. Recent discoveries using this chip 
have expanded understanding of the gut microbiota [36] 
and intestinal structure [37] (Figure 1).

Kidneys

Jang et al. [38] have developed the first multi-layered micro-
fluidic device using mouse kidney medullary collection 
duct cells to model renal filtration. The system provides a 
biomimetic setting that increases the polarity of the inner 
medullary collection duct in response to hormone activa-
tion, by encouraging cytoskeletal remodeling and molecular 
transport. In 2013, researchers used a similar microfluidic 
technique to cultivate human primary renal epithelial cells 
[39]. Musah et al. [40] have developed techniques for creat-
ing human glomerular chips with organ culture equipment, 
by using podocytes derived from pluripotent stem cells. 
These methods have been used to duplicate the structural 
and functional attributes of the glomerular capillary mem-
brane—a feat previously deemed infeasible through existing 
approaches. Sakolish et al. [41] have devised a microfluidic 
device in human proximal tubules and glomeruli with an 
integrated reusability feature allowing renal epithelial cells to 
proliferate under diverse conditions. Shear tension is known 

to often lead to nephrotoxicity. Schutgens et al. [42] have 
created robust tubule culture techniques enabling extensive 
extension and examination of human kidney tissue. A multi- 
functional primary renal epithelial cell culture replica built 
with this system has enabled rapid personalized molecular 
and cellular investigation, disease modeling, and drug test-
ing. Tao et al. have demonstrated a favorable approach for 
producing human islet organoids from pluripotent stem cells 
derived from humans [43].

Current applications  
of tumor modeling  
in oncology

Tumor models for drug  
screening
Monolayer cell models, which are the typical framework 
for numerous drug tests, cannot adequately reflect the 
intricacies of complicated 3D organs. Consequently, organ 
technology is frequently used in the identification of tumor 
drugs. In past years, scientists have created several tumor-
on-a-chip prototypes for medication testing [44–46]. 
Continued optimization of the model has enhanced its abil-
ity to screen drugs with better efficiency and low toxicity.  
For example, a microphysiological system is being devel-
oped to overcome the complexities of in vivo physiol-
ogy. Gervais et al. have incubated eight distinct types of 
micro-dissected tissues in a low-shear tensile environment 
by using a microfluidic technology that can easily and 
reliably capture samples. This platform has been used to 
examine micro-dissected tissue viability through confocal 
microscopy and flow cytometry, thereby yielding data on 
chemosensitivity tests and therapeutic response [45]. Phan 
et al. have created arrayed vascularized micro tumors and 
used them for blind-hole screening [46]. Anti-cancer med-
ications can be successfully discovered through the evalu-
ation of tiny chemical libraries, including FDA-approved 
compounds. This 3D platform is appropriate for assessing 
the effectiveness/toxicity of various tissues under more 
complicated settings than physiological surroundings. 
Polymethyl methacrylate (PMMA) based organ chips 
provide more reliable cytotoxicity findings than conven-
tional PDMS chips, thus aiding in research interventions 
in drug testing. Nguyen et al. have used trimethoxysilane 
to join PMMA polyethylene terephthalate orbital etching 
film, which can be used in microfluidic systems that do 
not allow the passage of small molecules and can facilitate 
reliable cytotoxicity assessments, such as those for antitu-
mor medicines [47]. The adhesion force between substrates 
is adequate for culture interchange; even at gauge pres-
sures exceeding 135 kPa, the fluid may still flow through 
the system without leakage. PMMA organ chips have 
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been shown to provide more reliable cytotoxicity find-
ings for vincristine when the chips are used with human 
lung adenocarcinoma cells. This technology expands basic 
membrane production capabilities, produces a 3D micro-
structure physiological environment, and more precisely 
replicates organ levels by using a range of thermoplastics 
and permeable orbital etching. The multiorgan-chip device 
may be used to estimate preliminary target effectiveness, 
metabolic conversion rates, and target off-target toxicity 
in addition to drug testing [48]. Hickman et al. have used 
a pumpless four-organ system (liver, heart, nerve, and 
muscle) to assess human responsiveness to five medica-
tions over a 14-day period. The system is operated in a 
serum-free specified medium under uninterrupted fluid 
flow. This method offers a unique approach for improving 
preclinical efficacy/toxicity studies’ anticipatory poten-
tial [49]. Hickman’s group subsequently discovered that 
antileukemia medications can be studied in a chip system 
via co-culture of primary human hepatocytes and human 
bone marrow cell cultures from two forms of malignancy 
[50]. Imatinib and diclofenac have cytostatic effects on 
human bone marrow. Anti-imatinib has no effect on liver 
vitality; however, diclofenac diminishes liver vitality by 
30%. Multiple medications have been tested in organ mod-
els of multidrug-resistant vulvar cancer strains in compar-
ison to non-multidrug-tolerant breast cancer cells, native 
liver cells, and cardiomyocytes derived from pluripotent 
stem cells. Tamoxifen hinders the breast cancer cell activ-
ity only after its metabolites are generated, and it does not 
affect vulvar tumor cells. The combination of tamoxifen 
and verapamil has nontargeted cardiac consequences, such 
as decreased contractility, lower beating frequency, and 
decreased conduction speed, without affecting survival. 
These models have demonstrated that cell-based in vitro 
culture methods may be used to assess the target effec-
tiveness and safety of parent medications and their metab-
olites, and increase drug assessment performance in pre-
clinical investigations. The organ-chip model technique 
greatly decreases research and development expenditures 
between preclinical experiments and human trials by 
developing a better predictive model [51, 52].

Modeling cancer invasion and 
metastasis
Tumor proliferation, a key challenge currently limiting 
modern clinical anti-cancer therapy, is responsible for more 
than 90% of cancer-associated fatalities [53, 54]. Maximum 
tumor-on-a-chip models currently replicate only tumors 
in situ; hence, tumor cell metastasis remains unknown, par-
ticularly the causes of the initial activation of tumor cell 
tumorigenesis and metastasis (such as specialized signal-
ing pathways) and the contribution of the microenviron-
ment to controlling this phenomenon [52]. Consequently, 
using empirical methods is critical to effectively define the 

metastatic microenvironment [55, 56]. Skardal’s team has 
demonstrated the effectiveness of a two-organoid metas-
tasis-on-a-chip platform [57]. When microfluidics is used 
to generate circulatory flow across the organoid system, 
tumor cells proliferate in the main focus and infiltrate the 
bloodstream, thus causing colorectal cancer (CRC) cells 
from the colon organoids to disperse into the circulation 
and deposit on the downstream liver organoids. This sim-
ulation was among the first in vitro models to mimic can-
cer cell metastasis, recapitulating metastasis from a 3D 
parent tissue in a 3D target tissue. The same researchers 
have improved the tumor metastasis system by incorporat-
ing new capabilities, such as increasing the downstream 
organoids from one to four locations. The authors have 
created a multicenter metastasis-on-a-chip system to eval-
uate cancer cells’ metastatic tendencies [56]. Researchers 
have created chips with several 3D organoids by using 3D 
photopatterning technologies. Cancer cells begin as CRC 
organoids in a single microfluidic chamber coupled with 
various downstream cavities containing liver, lung, and 
endothelial components. Under the continuous fluid flow 
in this model, fluorescence imaging tracking has revealed 
that HCT-116 CRC cells predominantly penetrate liver 
and lung tissues, which correspond to the organs with the 
highest CRC metastasis in humans. The platform has the 
potential to aid in the determination of intervention targets 
through better interpretation of metastasis [58]. The model 
is made up of four organs: one upstream lung and three 
downstream parallel organs comprising the brain, bone, 
and liver; consequently, it replicates the spread of lung can-
cer to the brain, bone, and liver. 

Conclusion and future  
outlook

Over the past two decades, the initial design of organ-on-
a-chip systems has undergone major changes with devel-
opments in fabrication technology, and their immense 
potential as a novel tool for drug design and development 
has been demonstrated. New organ-on-a-chip systems with 
major advances in functional performance, interfacing, 
automation, production, and customized precision therapy 
are beginning to emerge to address the increasing demand 
for improved preclinical studies for drug discovery. Future 
organ-on-a-chip platforms will be built on patient- induced 
materials including patient tissue, decellularized extra-
cellular matrix, and other biological agents for individu-
alized precision medicine, wherein patient sampling and 
stratification bioindicators will be crucial elements for 
drug discovery success. Recent research has revealed that 
patient-derived pluripotent stem cells (iPSCs), such as 
those obtained from skin fibroblasts, may provide a limit-
less option for manufacturing autologous target organs or 
tissues, thus enabling the development of patient-specific 
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organ chips for customized disease modeling and drug 
testing. Moreover, the inclusion of iPSC-based organoids 
in organ-on-a-chip systems has led to the creation of orga-
noids-on-a-chip, a potent hybrid tool comprising an ex 
vivo organotypic microtissue generated by self-structuring 

and segregation of stem cells in a 3D matrix. Efforts in 
developing patient iPSC-derived organ chips are expected 
to overcome the limitations of traditional “one-size-fits-
all” therapeutics, thus offering an ideal remedy for indi-
vidual patients within populations with the same disease.
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