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Recent advances in genetically modified 
large-animal models of human diseases
Jing Zhang1,2,3, Xiaoyue Sun1,2,3 and Chunwei Cao1,2,3,4,*

Introduction

Animal models, which are essential in bio-
logical and medical research, greatly pro-
mote advances in genetic research on human 
diseases. Among them, large-animal mod-
els have advantages because of their greater 
similarity to humans in terms of anatomy 
and physiology (Table S1) [1]. In addition, 
large-animal models show higher heteroge-
neity in genetic backgrounds, thus mirror-
ing the genetic diversity of humans, and are 
genetically closer to humans than rodent 
models. Non-human primates (NHPs) are 
the model most closely resembling humans 
in evolution, genetics, physiology, the 
aging process, behavioral symptoms and 
pathological changes. Other large-animal 
models, including pigs, dogs, bovines and 
sheep, have been extensively studied to 
mimic human genetic diseases. However, 
their wide use in studies has been limited 
by a lack of efficient genetic engineering 
tools in these large animals. In recent years, 
new gene-editing technologies, mainly 
TALEN [2], CRISPR [3] and base editing 
[4], have made rapid progress and provided 
highly efficient tools for developing geneti-
cally modified large-animal models. Large-
animal models are increasingly used to 
study genetic diseases, owing to their high 

efficiency and simplicity and the flexibility 
of CRISPR/Cas9 systems [5]. To date, two 
conventional pipelines have been estab-
lished for the generation of genetically 
modified large-animal models [6]. One 
method is based on somatic-cell nuclear 
transfer (SCNT) combined with a genome- 
editing system [7]. The other involves gen-
erating gene-modified animals in a single 
step via microinjection of the CRISPR/
Cas9 genome-editing system into zygotes, 
without a need for gene editing of somatic 
cells in vitro [8]. The ability to introduce 
genes or variants into animal genomes has 
allowed for mechanistic investigation into 
the genetic contributions of specific genes 
to human diseases. Here, we review the 
recent development of large-animal  models 
and their applications in human genetic 
diseases over the past 5 years, focusing 
on disorders associated with the nervous, 
 cardiovascular and metabolic, immune and 
reproductive systems.

Nervous system 
diseases

Nervous system diseases are a group of 
disorders associated with impairment of 
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Abstract

Large-animal models show greater advantages than rodents in recapitulating human genetic diseases, 
 primarily because of their higher similarity to humans in terms of anatomy, physiology and genetics.  Notably, 
as genome-editing technologies have rapidly improved, particularly transcription activator-like effector 
nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR- 
associated protein 9) systems, their application in biomedical research has accelerated. A variety of gene-
tically modified large-animal models, including non-human primates, pigs, dogs, bovines and sheep, have 
been produced to recapitulate human inherited disorders, thus providing novel biological and translational 
insights. Here, we review recent progress in the generation of large-animal models over the past 5 years and 
summarize their use in studying human genetic diseases, focusing on the nervous system, cardiovascular 
and metabolic systems, the immune system, xenotransplantation, the reproductive system and embryonic 
development.
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the central and peripheral nervous system. Research atten-
tion has focused on neurodegenerative disorders, which 
are accompanied by several representative symptoms in 
patients, including extrapyramidal and pyramidal movement 
disorders, as well as cognitive or behavioral disorders [9]. 
Human diseases associated with neurodegenerative disor-
ders mainly include Parkinson’s disease (PD), Alzheimer’s 
disease (AD), Huntington’s disease (HD) and infantile neu-
ronal ceroid lipofuscinosis (CLN1), each of which has spe-
cific clinical symptoms and etiologies. In PD, studies have 
shown that both genetic and environmental factors are asso-
ciated with pathogenesis. Patients with PD mainly present 
with muscle stiffness, tremors, unsteady gait and balance 
and coordination difficulties [10]. AD is the most common 
type of dementia affecting the older population, and patients 
with AD present a progressive decline in cognition, memory 
and behavioral skills, which is probably driven by  β-amyloid 
protein deposition and intracellular accumulation of hyper-
phosphorylated tau protein [11]. HD is a rare inherited neu-
rodegenerative disorder caused by a trinucleotide repeat 
(CAG) expansion in the HTT gene. Patients with HD exhibit 
uncontrolled choreatic movements, behavioral and psychi-
atric problems, and dementia [12]. CLN1 is a rare genetic 
disease caused by genetic changes in the PPT1 gene, which 
contribute to a deficiency in the soluble lysosomal enzyme 
palmitoyl protein thioesterase-1 (PPT1). Clinically, patients 
with CLN1 show severe neuronal degeneration, cortical 
thinning and overall brain atrophy [13]. Importantly, neuro-
degenerative diseases are age dependent [14], and previous 
studies have shown that mouse PD models do not fully rep-
licate human pathological manifestations, probably because 
rodents lack major anatomical features found in humans, 
such as distinguishable subdivisions of the globus pallidus 
and a subthalamic nucleus [15, 16]. Therefore, the establish-
ment of large-animal models for reproducing neurodegen-
erative lesions has become an attractive choice. Recently, 
Li et al. have built the first rhesus monkey model of etiolog-
ical PD by co-editing the PINK1 and DJ-1 genes in the sub-
stantia nigra region of the monkey brain with the CRISPR/
Cas9 system delivered by adeno-associated virus serotype 
9 (AAV9). This transgenic monkey model simulates PD 
phenotypes well, such as bradykinesia, tremor and postural 
instability, which are accompanied by the key pathological 
characteristics of PD, including severe loss of nigral dopa-
minergic neurons and the presence of α-synuclein pathology 
within the gene-edited substantia nigra [17]. In 2019, Yang 
et al. generated a CRISPR/Cas9-mediated PINK1-deleted 
monkey model and observed robust early-onset neurodegen-
eration in various brain regions; this model should provide 
important information for studying the function of PINK1 
and progressive neurodegeneration [18]. In addition, this 
group has also demonstrated that PINK1 kinase activity 
rather than its mitochondrial function is a selective require-
ment for neuronal survival in primate brains, and have further 
suggested that PINK1 kinase dysfunction might be associ-
ated with human PD and other pathological conditions [19]. 
Furthermore, to create an ideal inherited PD minipig model, 
Zhu et al. have produced Bama minipig models by introduc-
ing three PD-causing missense variants in the SCNA gene 
(E46K, H50Q and G51D) by using CRISPR/Cas9-mediated 

gene editing combined with SCNT. Owing to the absence of 
α-synuclein-immunopositive pathology at 3 months of age, 
these pig models still must be developed to investigate the 
presence of PD-like pathological features [20]. In contrast 
to PD, AD is associated with clinical memory and cogni-
tion deficits as well as pathologically neurofibrillary tangles 
and amyloid plaques [21]. Recently, an AD transgenic pig 
model bearing mutations in hAPP (K670N/M671L, I716V 
and V717I), hTau (P301L) and hPS1 (M146V and L286P) 
has been developed. This model shows high expression of 
target genes in tissues, particularly in the brain, and exhibits 
hallmarks of damaged neurons consisting of Aβ-40/42, total 
Tau and GFAP; therefore, it may serve as an ideal model 
for studying AD pathogenesis [22]. A knock-in (KI) pig 
model carrying the mutant huntingtin (HTT) gene shows 
consistent movement and behavioral abnormalities, which 
are accompanied by striking and selective degeneration of 
striatal medium spiny neurons [15]. This work first demon-
strated that the overt and selective neurodegeneration seen 
in patients with HD can be reproduced by endogenously 
expressed mutant proteins in large mammals. Additionally, 
SURF1−/− pig models have been generated with TALENs 
and CRISPRs to recapitulate Leigh syndrome associated 
with cytochrome c oxidase (COX) deficiency. SURF−/− pigs 
show failure to thrive, a short life span and muscle weakness; 
in newborn piglets, delayed central nervous system develop-
ment is observed in the absence of clear COX deficiency 
[23]. A CLN1 sheep model with CRISPR/Cas9-mediated 
insertion of human PPT1 (R151X) has been successfully 
constructed, which exhibits behavioral and motor deficits as 
well as hallmarks of brain atrophy, thus providing substan-
tial opportunities for further revealing the mechanisms and 
discovering a potential treatment for this form of neurode-
generative disease [24].

Moreover, several large-animal models have recently 
been created for modeling other nervous system diseases, 
such as autism spectrum disorder (ASD), Rett syndrome 
(RTT) and tuberous sclerosis (TSC). In 2019, Zhou et al. 
reported that SHANK-mutant monkeys exhibit sleep dis-
turbances, motor deficits and repetitive behaviors, as well 
as social and learning impairments, which resemble char-
acteristics of ASD and Phelan–McDermid syndrome [25]. 
Likewise, Tu et al. have developed a cynomolgus monkey 
model with SHANK3 gene disruption, which exhibits the 
core disease phenotypes of ASD. Furthermore, their results 
have indicated that treatment with the antidepressant fluox-
etine alleviates the abnormal behaviors and brain activity, 
thus indicating the advantages of using NHPs for ASD mod-
eling [26, 27]. In addition, Qin et al., concentrating on non-
syndromic ASD, have found that specific knockout of giant 
ANK2 in monkeys does not generate nonsyndromic ASD-
like behaviors, but gives rise to pronounced brain structural 
alterations [28]. Of interest, TALEN-edited MECP2 cyno-
molgus monkey models show major phenotypic similarities 
to human patients with RTT, thus suggesting that MECP2 
gene-edited mutant monkeys will be valuable for dissecting 
disease pathogenesis and developing potential therapeutic 
strategies for RTT [29]. Moreover, Tph2 knockout (KO) 
pig models have been generated and provided important 
insights into behavioral abnormalities induced by 5-HT 
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deficiency [30]. In addition, a recent study has developed 
a pig model by introducing a monoallelic mutation in the 
TSC1 gene with the CRISPR system. TSC1+/- pigs develop 
the clinical features observed in patients with TSC, including 
cardiac rhabdomyoma and subependymal nodules, which 
are absent in mouse TSC models [31]. STXBP1 is essential 
for neurotransmitter release, and STXBP1 (R292H)-mutated 
monkeys created through base editing show core symptoms 
of STXBP1 encephalopathy, thus providing a suitable ani-
mal model for STXBP1 encephalopathy [32]. Furthermore, 
Beraldi et al. have established an ATM−/− pig model for 
modeling ataxia telangiectasia. Interestingly, ATM−/− pigs 
not only simulate the neurological phenotype but also show 
other pathological features of patients with ataxia telangiec-
tasia, including altered thymus structure, dysregulation of 
the immune system and sterility [33].

Cardiovascular and metabolic 
diseases

Cardiovascular diseases refer to a group of disorders affect-
ing the heart and blood vessels [34]. Metabolic diseases are 
conditions in which abnormal metabolic processes occur, 
primarily including dyslipidemia and perturbation of amino 
acid metabolism [35]. In studies of inherited cardiovascu-
lar and metabolic diseases, pigs have received the greatest 
attention among large-animal models. Notably, pigs present 
many advantages over other animals, such as similar cardio-
vascular anatomy and cardiac physiology to those in humans 
[36], as well as a similar heart size to that in humans [37]. 
Therefore, they provide an ideal model for cardiovascular 
disease research. For example, pigs and humans express 
 β-MHC in ventricles, which play important roles in regulating 
heart rates and maintaining the cardiac output. However, fast 
 α-MHC, instead of β-MHC, has been found to be expressed 
in mouse ventricles—a characteristic notably different from 
those in humans and pigs [38]. In 2021, Gabriel et al. gen-
erated a CRISPR-edited pig model with SAP130 mutation 
for modeling human congenital heart disease, which is rare 
in pigs. This pig model, which manifests coronary heart dis-
ease with tricuspid dysplasia and tricuspid atresia associated 
with early embryonic lethality, provides opportunities for 
research in surgical operation and testing ventricular assist 
devices [39]. In addition, Montag et al., using the TALEN 
system, have successfully constructed an MYH7 (R723G)-
mutant pig model mimicking human familial hypertrophic 
cardiomyopathy [40]. A TALEN-induced SGCD KO pig 
mimicking human genetic cardiomyopathy has been gen-
erated and found to exhibit symptoms of systolic dysfunc-
tion, myocardial tissue degeneration and sudden death, thus 
potentially enabling the development of preclinical therapies 
[41]. Chen et al. have found that transgenic pF9 KO pigs 
carrying the human coagulation factor IX show partial ame-
lioration of bleeding; this model may be used to explore the 
pathological process of hemophilia [42]. Moreover, Zhang 
et al. have produced DUOX2D409G/D409G mutant pigs through 
ENU mutagenesis and demonstrated that the TR-KLF9 axis 

is responsible for the blood cell development in hypothy-
roidism [43].

Furthermore, many groups have chosen pigs or dogs for 
modeling human metabolic diseases. Studies have shown 
that, compared with those in mice, the lipoprotein profiles 
and metabolism patterns of pigs are overall more similar to 
those in humans [44]. However, a large proportion of cho-
lesterol transport is mediated by high-density lipoprotein in 
mice—an aspect clearly different from the low-density-lipo-
protein delivery in humans and pigs [45]. Therefore, several 
groups have produced pig mutants via the CRISPR/Cas9 
system for modeling human diabetes by targeting the INS 
[46], NGN3 [47] and hIAPP [48] genes, whose functions 
are associated with pancreatic development. Furthermore, 
Wang et al. first generated permanent neonatal diabetes mel-
litus (PNDM) dog models carrying GCK point mutations by 
using the BE3 system. These models exhibit similar features 
to those in patients with GCK-PNDM and thus may serve 
as ideal animal models to study this disease [49]. Moreover, 
ASGR1-deficient [50], ApoE KO [51] and ApoE/LDLR dKO 
[52] pigs have been found to be ideal models for human car-
diovascular diseases associated with lipid metabolism, par-
ticularly high cholesterol. Likewise, ApoE KO dog models 
produced with CRISPR/Cas9 also show advanced severe 
hypercholesterolemia and atherosclerosis characterized by 
stenosis and occlusion of arteries, together with stroke and 
gangrene [53]. These pig and dog models will be invalua-
ble in developing and evaluating new therapies, including 
endovascular procedures, to treat atherosclerosis and related 
disorders. Yao et al. have found that OSBPL2 KO pigs, gen-
erated through a combination of CRISPR/Cas9 and SCNT 
techniques, show hypercholesterolemia and progressive 
hearing loss, thus confirming the roles of OSBPL2 gene in 
nonsyndromic hearing loss and providing opportunities to 
unravel the potential relationships between auditory dysfunc-
tion and dyslipidemia/hypercholesterolemia [54]. Yin et al. 
have found that MC3R KO pigs, exhibiting increased body 
weight and body fat, can be used to reveal the physiological 
roles of MC3R in energy homeostasis [55]. In addition, 
chronic inflammation has been demonstrated to contribute 
to obesity and metabolic diseases, particularly metaflamma-
tion [56]. Zhang et al. have generated triple transgenic pigs 
through CRISPR/Cas9-mediated KI of GIPRdn, hIAPP and 
PNPLA3I148M and found that the model develops metabolic 
disorders accompanied by inflammation activation; thus, 
this model may be ideal for investigating metabolic inflam-
mation [57]. Interestingly, Zheng et al., in adipose-specific 
UCP1 KI pigs, have uncovered crucial roles of UCP1 in pro-
tecting the cardiovascular system through inhibiting tissue 
inflammatory responses [58].

Using FAH−/− pigs created by CRISPR/Cas9, an ideal ani-
mal model of hereditary tyrosinemia type 1 (HT1), Gu et al. 
have found that, before intrauterine death, direct intracyto-
plasmic delivery of CRISPR-Cas9 targeting the HPD gene 
reprograms the tyrosine metabolism pathway and protects 
pigs against FAH-deficiency-induced lethal liver injury, 
thus providing a therapeutic option for the treatment of 
HT1 [59]. Additionally, in 2020, Koppes et al. successfully 
produced a CRISPR/Cas9-mediated PAH-null pig model 
recapitulating human phenylalanine hydroxylase–deficient 
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phenylketonuria (PKU) and enabling investigation of ther-
apeutic interventions [60]. In addition, in 2021, Kaiser 
et al. generated a PAHhR408W/hR408W PKU pig model by 
using a TALEN system and found that this model mimics 
human phenotypes and responds well to dietary phenyla-
lanine restriction [61]. Importantly, these pig models for 
human PKU have introduced perspectives in the develop-
ment of therapeutic interventions and have unique value in 
gene-therapy studies.

Immune system diseases

Previous studies have indicated that rodent models have 
shortcomings in immunology research [62], and the differ-
ences in immune responses between rodents and humans 
might be attributable to genetics, lifespan, living environ-
ment and specific species-pathogen relationships [63]. 
Large-animal models can offer unique biological advantages 
in understanding human immunology and may be able to 
address questions that rodent models cannot answer [64]. 
Remarkably, in contrast with rodents, large animals show 
greater similarities to humans in terms of immune system 
development and response, including immune cell devel-
opment, innate immunity, regional immunity and infectious 
immunity. The pig immune system has been demonstrated 
to resemble that in humans for more than 80% of parame-
ters, whereas the mouse immune system has similarity for 
approximately 10% of parameters [65]. Swine models have 
been widely used in studies of autoimmune and immune-me-
diated inflammatory diseases. Interestingly, transgenic pigs 
with leptin overexpression show symptoms of systemic lupus 
erythematosus, including anemia, leukopenia and thrombo-
cytopenia, along with kidney and liver impairment. However, 
glucocorticoid therapies have been found to partially relieve 
the autoimmune symptoms. The leptin transgenic pig model 
is valuable for investigating the roles of adipocytokines in 
the modulation of immune responses [66]. Zhang et al. have 
successfully established complement protein C3 KO pigs, 
which can be used to delineate the roles of C3 in pathol-
ogy and physiology [67]. In addition, Li et al. have found 
that pigs carrying NLRP3 (R259W) homozygous mutations 
mimic aspects of human cryopyrin-associated periodic syn-
drome, such as early mortality, poor growth and spontaneous 
systemic inflammation symptoms [68]. Song et al. have built 
a pig model of human familial acne inversa, an inflammatory 
skin condition, by introducing an NCSTN+/R117X heterozy-
gous point mutation, and have further elucidated the mech-
anism underlying the development of this condition [69]. 
Large-animal models are also increasingly being developed 
and used in studies on infectious diseases. Yugo et al. have 
successfully established J

H
−/− gnotobiotic pigs with knockout 

of the immunoglobulin heavy chain. Compared with wild-
type pigs, J

H
−/− pigs show lower levels of HEV replication 

and enlarged livers after HEV infection, thus suggesting that 
J

H
−/− pigs may provide an efficient animal model to mimic 

HEV-specific lesions and dissect the mechanisms of HEV 
pathogenesis [70]. Notably, the emergence of the novel virus 
SARS-CoV-2 has greatly affected human life worldwide. 

ACE2, the major entry receptor for this virus, acts on the 
kinin-kallikrein, renin-angiotensin and coagulation systems, 
which have been implicated in the pathogenesis of severe 
cases of the related disease, COVID-19 [71]. To reproduce 
severe cases of COVID-19, Du et al. have successfully estab-
lished hACE2 KI pigs, and have detected higher expression 
of hACE2 protein in the lungs, kidneys, testes and intestines, 
similarly to the conditions observed in humans [72].

Xenotransplantation

Xenotransplantation research in large-animal models has 
made major advances. The current research focus in this 
field includes immune rejection, physiological incompati-
bilities and the risk of microbial transmission in conducting 
transplantation [73]. Pigs have received substantial atten-
tion, owing to their similarities with humans in terms of 
biological features. The enzyme 1,3-galactosyltransferase 
(Galα (1,3) Gal), encoded by GGTA1, acts as a key factor 
in xenograft rejection, by catalyzing the synthesis of αGal. 
In 2017, TALEN modified CMAHKO/GTKO/sh-TNFRI-Fc/
hHO-1 quadruply modified pigs have been found to over-
come ultra-acute and acute anti-inflammatory rejection of 
xenografts [74]. In addition, Adams et al. have found that 
the kidneys transplanted from CRISPR/Cas9-mediated dou-
ble-xenoantigen Gal-Sd

a
 KO pigs into chemical immuno-

suppression rhesus monkeys show prolonged xenogeneic 
survival times as long as 435 days; they have also revealed 
that early graft rejection is mediated by IgM antibody, but 
the 435-day graft loss might nonetheless have resulted from 
IgG-antibody-mediated rejection [75]. In addition, Kim et al. 
have performed renal transplantation from αGal KO/CD55 
transgenic pigs into rhesus macaques, and have found that 
early xenograft rejection was induced by abundant CD4+ 
cell infiltration, and later rejection is mediated by  antibodies 
[76]. In addition, Fu et al. have demonstrated that skin 
grafts from GGTA1−/−β2M−/−CIITA−/− triple knockout (GBC-
3KO) pigs show significantly prolonged survival in mice, 
thus indicating that GBC-3KO effectively decreases xeno-
geneic immune responses [77]. Rao et al. have developed 
HLA-G1+/GGTA1 KO pigs through transgenic expression of 
HLA-G1+ in GGTA1 KO pigs, and have demonstrated that 
these donors suppress the activation and proliferation of 
monkey and human T, B and natural killer (NK) cells [78]. 
In 2019, Watanabe et al. transplanted pig lung xenografts 
expressing human-CD47 (hCD47) into baboons and found 
that the xenografts had a prolonged survival time for 8 weeks 
[79]. In addition, two reported cases of pig-to-human kid-
ney xenotransplantation have shown that genetically mod-
ified kidney xenografts from GGTA1−/− pigs are viable and 
can function in brain-dead human recipients for 54 hours, 
without signs of hyperacute rejection [80]. In regard to the 
xeno-organ overgrowth problem, Hinrichs et al. have elimi-
nated the growth hormone receptor in GGTA1 KO/hCD46+/
hTHBD+ pigs and found that GHR knockout decreases the 
intrinsic growth potential of pig xeno-organs [81].

In addition to being an organ-transplant donor, immuno-
deficient pigs are also favorable recipient research models. 
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Choi et al. have reported that RAG2−/− pigs representing severe 
combined immunodeficiency (SCID) show advantages 
over Rag2−/− SCID mice, because the mice show intense, 
infrequent and mild clusters of CD3+, CD4+ and CD8+ sig-
nals. The gene expression of T, B or NK cell maturation in 
RAG2−/− SCID pigs is less than that in Rag2−/− SCID mice 
[82]. Nelson et al. have found that RAG2−/−FAH−/− immu-
nodeficient pigs can receive infusions of human liver cells, 
although the NK cells are a barrier to the expansion of hepat-
ocytes [83]. Furthermore, Ren et al. have demonstrated that 
IL2RG−/Y pigs allow for the development of human melano-
ma-derived tumors and thus may serve as hosts for human 
cancer [84]. In addition, Hendricks-Wenger et al. have found 
that RAG2/IL2RG double KO pigs permit growth of human 
pancreatic adenocarcinomas, whose electrical properties and 
responses to irreversible electroporation are similar to those 
of excised human pancreatic cancer tumors, thus suggesting 
a key step in the development of immune humanized SCID 
pig models [85]. Dong et al. have successfully generated 
porcine endogenous-retrovirus-inactivated pigs by using 
CRISPR/Cas9, thus addressing the safety concerns in clin-
ical xenotransplantation [86].

Reproductive system and 
embryonic development

Large-animal models also have advantages over rodent 
models in human reproduction studies. For example, large 
animals provide valuable resources for investigating follic-
ulogenesis, which is challenging in rodents. Shi et al. have 
generated bone morphogenesis protein 15 (BMP15) KO pigs 
with the CRISPR/Cas9 system and found that this model 
shows an infertility phenotype. In detail, BMP15 deple-
tion obstructs follicle development at preantral stages, thus 
resulting in the development of many structurally abnormal 
follicles and consequently leading to streaky ovaries and 
lack of a pronounced estrus cycle [87]. In addition, large ani-
mals are ideal models for studies on mammalian embryonic 
development. Recently, two groups have found that SRY KO 
pigs generated by CRISPR/Cas9 [6] and SRY KI bovines 
generated by TALEN [88] show sex reversal, thus further 
demonstrating the conserved roles of SRY in mammalian 
sex  determination and differentiation. Zhou et al. have con-
structed a pig parthenogenetic embryo model by targeting 
the PDHA1 gene with CRISPR/Cas9 at the four-cell stage 
and found that early embryonic development is blocked, and 
histone acetylation significantly decreases, thereby demon-
strating the critical roles of PADH1 in zygotic genome 
activation in porcine embryos [89]. Kilian et al. have con-
structed OCT4 KO bovine embryos by using CRISPR and 
SCNT; their results have indicated that, as in human early 
embryonic development, OCT4 is necessary for maintain-
ing NANOG-positive epiblast cells in the inner cell mass 
of bovine blastocysts, in contrast to findings in mice [90]. 
Likewise, Daigneault et al. have shown that disruption of 
POU5F1 in bovine embryos by the CRISPR/Cas9 system 
contributes to embryonic arrest at the morula stage, thereby 
preventing blastocyst formation. Moreover, conservation 

of POU5F1 functions in embryonic development has been 
observed in bovines and humans, in contrast to mice [91]. 
Thus, these studies highlight that bovine embryogenesis pro-
vides an outstanding model for understanding human early 
development.

Other diseases

In 2019, Dorado et al. established a Yucatan minipig model 
of Hutchinson-Gilford progeria syndrome through a hete-
rozygous LMNA c.1824 C>T mutation. This model shows 
severe growth retardation, lipodystrophy, skin and bone 
alterations, cardiovascular disease and death around puberty, 
in agreement with symptoms in humans [92]. Furthermore, 
in 2020, monkey models bearing LMNA c.1824 C>T, cre-
ated by base editing, were also found to show the typical 
symptoms of Hutchinson-Gilford progeria syndrome [93]. 
To investigate the biological function of longevity protein 
SIRT6 in primates, Zhang et al. have generated SIRT6-null 
cynomolgus monkey models with the CRISPR/Cas9  system. 
The KO monkeys died shortly after birth and exhibited 
severe prenatal developmental retardation, thus mimick-
ing human perinatal lethality syndrome [94]. In addition, 
Tsukiyama et al. have introduced mutations in PKD1 and 
produced a  cynomolgus macaque model of autosomal dom-
inant polycystic kidney disease. PKD1 depletion in hetero-
zygous monkeys leads to severe cyst formation, primarily in 
the collecting ducts, and cyst formation perinatally in distal 
tubules, thus somewhat reflecting the initial pathology in 
humans [95].

Duchenne muscular dystrophy (DMD) is a common 
hereditary childhood myopathy caused by DMD gene muta-
tions [96]. Notably, dogs spontaneously produce DMD [97]. 
Multiple canine DMD models have also been established 
with genome-editing technologies, thus providing opportu-
nities for in vivo gene-therapy trials. In 2018, Amoasii et al. 
performed in vivo CRISPR gene editing in a deltaE50-MD 
dog model of DMD by using adeno-associated viruses 
(AAVs); this gene-editing treatment restores the dystrophin 
in skeletal muscle and cardiac muscle [98]. Furthermore, 
Moretti et al. have demonstrated that intramuscular injection 
of AAV9-Cas9-gE51 in a deltaE50-MD swine model induces 
expression of a shortened dystrophin (DMDΔ51–52), 
thereby improving skeletal muscle function [99]. In addition, 
Li et al. have successfully established FSI-I-I KI pigs by 
using CRISPR/Cas9. The myofiber sizes in FSI-I-I KI pigs 
were significantly greater than those in wild-type pigs, thus 
indicating great promise for treatment of human muscular 
dystrophy [100]. However, although dystrophin expression 
was restored, Hakim et al. have found that AAV-CRISPR 
treatment leads to a Cas9-specific immune response in mul-
tiple dystrophic canine models, thus posing major challenges 
for CRISPR gene-editing therapies [101].

In 2019, Gao et al. used CRISPR/Cas9 and SCNT to 
knock out the HR gene in pigs; piglets with mutations exhibit 
a lack of hair on the eyelids, and abnormalities in the thy-
mus and peripheral blood [102]. Furthermore, genome edit-
ing of the FGF5 [103], EDAR [104] and VEGF [105] genes 
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in goats and sheep has been found to significantly increase 
hair growth and hair-follicle density, thus suggesting poten-
tial roles of these genes in follicle diseases. Han et al. have 
produced HOXC13 KO pigs with CRISPR/Cas9. This model 
shows a diminished number of follicles and disarray in hair 
follicle cables, thus mimicking human ectodermal dyspla-
sia-9 [106]. In addition, a pig model bearing the deep intronic 
mutation IVS49-727 A>G in ABCA12 shows hyperkeratotic 
skin and a response to systemic retinoid treatment, thereby 
recapitulating human harlequin ichthyosis [107]. In 2018, 
Li et al. successfully generated pigs carrying the TWIST2 
E75K mutation and TYR Q68Stop variant by using BE3 
and SCNT; the phenotypes were consistent with those of 
human ablepharon macrostomia syndrome and oculocutane-
ous albinism type 1 (OCA1), respectively [108]. Moreover, 
Zhang et al. have established a COL2A1 KO pig model 
exhibiting severe skeletal dysplasia and tracheal collapse, to 
investigate the pathogenesis of early skeletal developmental 
defects [109]. Likewise, Williams et al. have created a sheep 
hypophosphatasia model through CRISPR/Cas9-mediated 
KI of an ALPL gene mutation (1077 C>G). The KI sheep 
exhibit diminished serum alkaline phosphatase activity, tail 
vertebral bone size and metaphyseal faring, thus providing 
a unique platform for bone research [110]. Additionally, 
Watanabe et al. have created a SALL1-null pig model dis-
playing a nephrogenic phenotype, thus potentially offering a 
nephrogenic niche for human kidney regeneration [111]. In 
2018, FGFR2-IIIb was found to play a role in lung branching 
morphogenesis in pigs overexpressing dominant-negative 
FGFR2-IIIb made by SCNT [112]. Hai et al. have produced 
a pig model carrying the c.740 T>C (L247S) mutation in the 
MITF gene for modeling human Waardenburg syndrome 
type 2A [113]. The group has further performed CRISPR-
Cas9-mediated gene therapy to correct phenotypes including 
anophthalmia and hearing loss [114]. Moreover, Engevik 
et al. have generated a pig model by introducing the MYO5B 
P663L mutation with TALENs; the pigs mimic human 
microvilli inclusion body disease [115].

Conclusions and future 
prospects

In conclusion, large-animal models have been widely used 
to mimic human genetic diseases, particularly disorders of 
the nervous system, cardiovascular and metabolic systems, 
immune system, reproductive system and embryonic devel-
opment. Since 2017, more than 80 research articles regard-
ing the construction of large-animal models for human 
diseases have been published (in NHPs, pigs, dogs, cattle, 
sheep and goats, on the basis of PubMed searches). The 
development of genome-editing tools has greatly revolution-
ized the field, thus making genetic engineering and genome 
editing of large-animal genomes simpler, and more precise 
and efficient. Moreover, large-animal models provide major 
advantages in modeling specific human diseases that rodent 
models may fail to faithfully recapitulate. Importantly, 
large-animal models may also provide unique or unexpected 
insights for better understanding of human diseases.

The increasing number of large-animal models has her-
alded a new phase of understanding of the complex con-
ditions of human inherited disease. These advances have 
 further offered prospects for therapeutic applications of 
gene therapy in large animals. Many large animals, such as 
pigs [116], dogs [117] and NHPs [118], have been used for 
the assessment of gene-transfer techniques or gene-therapy 
treatment trials. Notably, owing to their relatively longer 
lifespan and size, large animals have substantial advantages 
in addressing concerns regarding the long-term efficacy and 
safety of gene-therapy approaches. Large-animal models also 
present a unique translational framework for validating and 
testing novel therapeutic tools, such as new genome-editing 
or gene-delivery systems. For example, in 2021, Musunuru 
et al. delivered a CRISPR base-editing system by using lipid 
nanoparticles and generated durable low-density-lipoprotein 
cholesterol for 8 months in monkey livers, thus providing a 
promising strategy to target in vivo treatment for liver dis-
eases [119]. Currently, omics technologies, including genom-
ics, transcriptomics, proteomics and metabolomics, have 
been used extensively in biomedical studies and yielded val-
uable new findings. Similarly, increasing amounts of omics 
data have been obtained in large-animal models; these data 
may be used to choose suitable animal models according to 
different scenarios. Specially, recent technological advances 
have enabled omics investigations of single cells or restricted 
spatial areas, thus revealing information on gene expres-
sion within individual cells and also capturing spatial gene 
expression profiles. Prominently, four studies have built a 
single-cell atlas including 33 human organs [120–123]. Han 
et al. completed a mouse cell atlas including more than 40 
mouse organs and tissues [124]. Recently, an adult mon-
key cell atlas covering 45 different tissues has been created 
[125]. Furthermore, the BodyMap transcriptome containing 
approximately 31 adult pig tissues has been reported [126]. 
In addition, single-cell RNA sequencing of various tissues or 
organs derived from dog lung immune cell populations [127], 
sheep germ cells [128] and bovine sperm cells [129] have 
been obtained. Theoretically, comparison of these omics data 
between human and animal models should provide systemic 
information for estimating the biological relevance or simi-
larity of the model to humans, thus helping researchers select 
the right model according to a broad perspective.

In 1990, the first gene-therapy trial for a rare inherited 
disease known as SCID was initiated [130]. Owing to great 
advances in genome-editing and gene-delivery systems, gene 
therapy has become a major research field that holds great 
promise for treating human genetic diseases. Importantly, 
gene therapy has been clinically used in human genetic 
disorders, such as thalassemia, DMD, cystic fibrosis, eye 
disorders, metabolic disorders and blood coagulation disor-
ders. Trials of gene therapy for infectious diseases, includ-
ing acquired immunodeficiency syndrome and COVID-19, 
have also been reported recently [131]. In fact, large-animal 
models have substantial advantages in gene-therapy studies. 
Similarly to humans, large animals commonly have a het-
erogeneous genetic background, unlike inbred mice; have 
long lifespans enabling investigation of long-term effects; 
and have relevant organs and body sizes matching those of 
neonates or children, thus providing unique opportunities to 
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address issues associated with gene therapy [132]. Specially, 
large animals have been considered suitable for modeling 
human neurodegenerative diseases, largely because large 
animals have similar brain sizes to those in humans [133] 
and have a sulcated cortex, which is not observed in rodents 
[134]. Because of the advantages of their long life span, gene 
therapy targeting cystic fibrosis in large animals has been 
successfully demonstrated [135]. Large animals have also 
been used for developing and assessing novel gene-delivery 
techniques. For example, the clinically well established and 
catheter-based antegrade delivery methods, as evaluated in 
large-animal models, are safer than other invasive delivery 
techniques, which is a critical aspect for treating patients 
with cardiac disease [136]. Furthermore, numerous gene-de-
livery systems, including viral and non-viral gene-delivery 
systems, have recently been developed for use in gene ther-
apy. Indeed, large animals are ideal models for evaluating 

the specificity, safety and efficiency of these gene-delivery 
systems.

Collectively, the production of large-animal models for 
human inherited diseases has made considerable advances 
resulting from the rapid progress in genome editing in 
large animals (Figure 1; Table S2). Further development of 
genetic manipulation tools with higher gene modification 
efficiency, as well as better gene-delivery efficiency and 
specificity, will support broader application of large-animal 
models in translational biomedical research.
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