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Introduction

Ovarian cancer (OV) is a leading cause of 
cancer death among women [1]. It is char-
acterized by high heterogeneity and relapse 
risk, particularly for high-grade serous 
ovarian cancer [2]. In 2022, approximately 
19880 new cases were diagnosed, and 
12810 deaths from the OV occurred in the 
United States [3].

OV is the most lethal gynecological 
malignancy, and OV tissues include both 
tumor and non-tumor cells in the microen-
vironment. The tumor microenvironment, 
the cellular environment in which the 
tumor exists, consists of immune cells, 
stromal cells, extracellular matrix com-
ponents, and exosomes [4]. Among them, 
immune and stromal cells are major com-
ponents. Growing evidence supports a key 
role of the tumor microenvironment in the 

growth, progression, and metastasis, and 
hence prognosis, of OV [5]. However, the 
effects of gene expression signatures asso-
ciated with the OV microenvironment on 
prognosis remain unknown. On the basis 
of gene expression profiles, The Cancer 
Genome Atlas (TCGA) network has clas-
sified OV into four molecular subtypes: 
differentiated, immunoreactive, mesen-
chymal, and proliferative, which are asso-
ciated with patient survival [6]. BRCA1 
plays an important role in DNA-damage 
repair, chromatin remodeling, cell-cycle 
control, and transcriptional regulation, 
whereas BRCA2 acts mainly on homolo-
gous recombination [7]. Although many 
reports have described the relationship 
between BRCA1/BRCA2 mutations and 
OV prognosis, the prognostic value of 
BRCA1/BRCA2 mutations has not been 
well clarified.
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Abstract

Background: Ovarian cancer (OV) is the fifth leading cause of cancer death among women. Growing evi-
dence supports a key role of the tumor microenvironment in the growth, progression, and metastasis of OV. 
However, the prognostic effects of gene expression signatures associated with the OV microenvironment 
have not been well established. This study was aimed at applying the Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm to identify tumor-microen-
vironment-associated genes that predict outcomes in patients with OV.
Methods: The gene expression profiles of OV samples were downloaded from The Cancer Genome Atlas 
database. The immune and stromal scores of 469 OV samples on the basis of the ESTIMATE algorithm were 
available. To better understand the effects of gene expression signatures associated with the OV microenvi-
ronment on prognosis, we categorized these samples into groups with high and low ESTIMATE scores. A 
different OV cohort from the Gene Expression Omnibus (GEO) database and immunohistochemistry from 
The Human Protein Atlas database were used for external validation.
Results: The molecular subtypes of patients with OV correlated with the stromal scores, and the mesenchy-
mal subtype had the highest stromal scores. Patients with higher stromal scores had lower 5-year overall 
survival; 449 differentially expressed genes in the stromal score group were identified, 26 of which were 
significantly associated with poor prognosis in patients with OV (p < 0.05). In another OV cohort from the 
Gene Expression Omnibus database, six genes were further validated to be significantly associated with poor 
prognosis. Immunohistochemistry data from The Human Protein Atlas database confirmed the overexpres-
sion of CX3CR1, GFPT2, NBL1, TFPI2, and ZFP36 in OV tissues compared with normal tissues.
Conclusion: Our findings suggest that CX3CR1, GFPT2, NBL1, TFPI2, and ZFP36 may be promising bio-
markers for OV prognosis, with clinical implications for therapeutic strategies.
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The Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) algo-
rithm has been proposed to score the fraction of immune and 
stromal cells in tumor tissues, then predict the infiltration 
level of immune and stromal cells and tumor purity, on the 
basis of gene expression signatures from TCGA database 
[8]. ESTIMATE is a tool for predicting tumor purity and 
the presence of infiltrating stromal/immune cells in tumor 
tissues on the basis of gene expression data. The algorithm 
is based on single-sample gene set enrichment analysis 
and generates three scores: (1) an immune score that rep-
resents the infiltration of immune cells in the tumor tissue, 
(2) a stromal score that captures the presence of stroma in 
tumor tissue, and (3) an estimate score that indicates tumor 
purity. Although several reports have used the ESTIMATE 
algorithm in various tumors, such as breast cancer [9], head 
and neck squamous cell carcinoma [10], glioblastoma multi-
forme [11], and gastric cancer [12], its application in OV has 
not been studied in detail.

In this study, we applied the ESTIMATE algorithm to 
identify several tumor-microenvironment-associated genes 
that predicted outcomes in patients with OV. Notably, we 
further validated these genes in a different OV cohort from 
the Gene Expression Omnibus (GEO) database and immu-
nohistochemistry (IHC) data from The Human Protein Atlas 
(THPA) database.

Materials and methods

Data preparation

Level 3 gene expression profile data based on the Affymetrix 
HT Human Genome U133a (HT-HG-U133A) microarray 
platform for OV samples were downloaded from TCGA 
data coordination center (https://tcga-data.nci.nih.gov/
tcga/) on September 8, 2017. Clinical data for the OV sam-
ples, including sex, age, histological type, clinical stage, 
histological grade, molecular subtype, somatic mutation 
status of BRCA1/BRCA2, and survival information were 
also obtained from TCGA database. The immune and stro-
mal scores of 469 OV samples were available based on the 
ESTIMATE. An independent dataset comprising data from 
40 patients with OV from series GSE32063 was used for 
external validation in this study.

Identification and analysis of 
differentially expressed genes
According to the immune and stromal scores obtained from 
the ESTIMATE algorithm, all OV samples were divided 
into two groups with a high or a low (immune or stromal) 
score. The R package limma was used for the identifica-
tion of differentially expressed genes (DEGs) [13]. The 
DEGs between two groups (high group vs. low group) were 
screened on the basis of the following cutoffs: false dis-
covery rate (FDR)-adjusted p-value < 0.05 and fold change 

(FC) > 1.5. Upregulated DEGs denoted the genes that were 
upregulated in the high group compared with the low group, 
whereas downregulated DEGs denoted the genes that were 
downregulated in the high group compared with the low 
group.

Heatmaps and clustering analysis

ClustVis, a web tool, was used to produce heatmaps and 
principal component analysis (PCA) plots of DEG distribu-
tion between groups with high vs. low immune (or stromal) 
scores [14].

Construction of volcano plots 
and Venn diagrams
A volcano plot is a scatter diagram that combines measures 
of statistical significance (such as p value) and magnitude of 
change in statistical tests to enable rapid visual identification 
of data points (e.g., genes) with high statistical significance. 
Volcano plots were used for determining the distribution of 
upregulated and downregulated DEGs. Venn diagrams have 
been widely used in various types of data analysis. In micro-
biome studies, they are commonly used to analyze shared 
and unique species between samples (groups). The upreg-
ulated DEGs and downregulated DEGs shared between the 
immune score group and stromal score group were identified 
with Venn diagrams (Venn 2.1.0).

Gene Ontology function and 
Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment 
analysis of DEGs

Gene Ontology (GO) function (biological processes (BP), 
molecular functions (MF), and cellular components (CC)) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis of DEGs were assessed with 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID) [15]. An FDR-adjusted p-value < 0.05 
was considered statistically significant.

Construction of a protein-protein 
interaction network
The protein-protein interaction (PPI) network of upregu-
lated DEGs in the stromal group was constructed with the 
STRING database [16] and Cytoscape software 3.6.1 [17].

Overall survival curves

The relationship between gene expression levels of DEGs 
and overall survival (OS) in patients with OV was analyzed 
with Kaplan-Meier survival curves with a log-rank test.
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Validation of prognostic DEGs with 
IHC data from THPA database
The public database THPA (https://www.proteinatlas.org) 
can be used to verify the expression of target genes [18]. We 
observed protein expression differences in prognostic DEGs 
between OV and normal tissues, on the basis of IHC data 
from THPA database.

Statistical analyses

All statistical analyses were performed in GraphPad 
Prism 5 (Version 5.01) and R version 3.5.1. The data 
analyses in this study were performed with standard sta-
tistical tests whenever appropriate. Comparisons between 
groups were  evaluated with unpaired t test and one-way 
analysis of  variance. p < 0.05 was considered statistically 
significant.

Results

Correlation of immune and  stromal 
scores with clinicopathologic 
 characteristics

The gene expression profiles and clinical data for 469 
patients with OV pathologically diagnosed between 1992 
and 2009 were downloaded from TCGA database. Detailed 
clinicopathologic features are shown in Table 1. An over-
all flowchart of this study is shown in Figure 1. The his-
tology type of all patients with OV obtained from TCGA 
database in this study was ovarian serous cystadenocar-
cinoma. The treatment strategies for the patients with OV 
mainly included surgery and combination chemotherapy; 
26 patients received additional radiotherapy. The cohort 
included 63 (13.4%) cases of differentiated subtype, 80 
(17.1%) cases of immunoreactive subtype, 64 (13.6%) cases 

Table 1 Clinicopathologic Characteristics of Patients with OV

Characteristics TCGA Cohort (n = 469) GSE32063 Cohort (n = 40)
Age

 <40 years 7 (1.5%) 1 (2.5%)

 40–60 years 241 (51.4%) 21 (52.5%)

 ≥60 years 221 (47.1%) 18 (45.0%)

Molecular subtype

 Differentiated subtype 63 (13.4%)

 Immunoreactive subtype 80 (17.1%)

 Mesenchymal subtype 64 (13.6%)

 Proliferative subtype 74 (15.8%)

 Unknown 188 (40.1%) 40 (100%)

Histological Type Ovarian Serous Cystadenocarcinoma Ovarian Serous Cystadenocarcinoma
Histological grade

 G1 (well differentiated) 2 (0.4%)

 G2 (moderately differentiated) 57 (12.2%) 23 (57.5%)

 G3 (poorly differentiated) 400 (85.3%) 17 (42.5%)

 G4 (undifferentiated) 1 (0.2%)

 Gx (grade cannot be assessed) 8 (1.7%)

 Unknown 1 (0.2%)

Tumor stage

 II 25 (5.3%)

 III 365 (77.8%) 31 (77.5%)

 IV 75 (16.0%) 9 (22.5%)

 Unknown 4 (0.9%)

BRCA1-mutant status

 Wild-type BRCA1 287 (61.2%)

 Mutant BRCA1 10 (2.1%)

 Unknown 172 (36.7%) 40 (100%)

BRCA2-mutant status

 Wild-type BRCA2 288 (61.4%)

 Mutant BRCA2 9 (1.9%)

 Unknown 172 (36.7%) 40 (100%)

Vital status

 Dead 295 (62.9%) 22 (55.0%)

 Alive 174 (37.1%) 18 (45.0%)
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of mesenchymal subtype, 74 (15.8%) cases of proliferative 
subtype, and 188 (40.1%) cases of unknown molecular sub-
type. The ESTIMATE algorithm was used to evaluate the 
infiltration of immune and stromal cells, and tumor purity. 
According to the ESTIMATE algorithm, the immune scores 
ranged from -1498.58 to 2774.16, and the stromal scores 
were between -1988.05 and 1837.43. The immune scores 
of patients were higher than the stromal scores in the entire 
OV cohort. The immunoreactive subtype showed the highest 
average immune scores among the four subtypes, and was 
followed by mesenchymal subtype, differentiated subtype, 
and proliferative subtype (Figure 2A, p < 0.0001). Similarly, 
the mesenchymal subtype had the highest average stromal 
scores, and was followed by the immunoreactive subtype, 
differentiated subtype, and proliferative subtype (Figure 2B, 
p < 0.0001). Patients with the proliferative subtype had the 
lowest immune scores and stromal scores. These results sug-
gested that both immune and stromal scores clearly corre-
lated with the classification of molecular subtypes in patients 
with OV.

In this study, ten patients had BRCA1 mutations with OV, 
287 had wild-type BRCA1, and 172 patients had unknown 
status. In addition, nine patients had BRCA2 mutation, 288 
had wild-type BRCA2, and 172 patients had unknown status. 
We determined the distribution of immune and stromal scores 
between BRCA1/2-mutant and wild-type patients with OV 
(Figure 2C–F). However, no significant differences were 

found in the immune and stromal scores between BRCA1/
BRCA2mutant and wild-type patients.

Correlation of immune and stromal 
scores with OV prognosis
To better understand the correlation of immune and stromal 
scores with OV prognosis, we categorized the 469 patients 
with OV into groups with high and low scores, according 
to the top half of 235 samples with higher immune (or stro-
mal) scores and the bottom half of 234 samples with lower 
immune (or stromal) scores, respectively. Patients with low 
vs. high immune scores showed no difference in median 
survival (p = 0.5707, Figure 2G). The median survival of 
patients with high stromal scores was lower than that of 
patients with low scores, on the basis of the Kaplan-Meier 
curve, although the difference was not statistically signifi-
cant (p = 0.1145). This trend was reflected in the 5-year OS 
of patients with OV (p = 0.0376, Figure 2H).

Identification and analysis of DEGs 
on the basis of immune and stromal 
scores

To explore the association of gene expression signatures 
with immune and stromal scores, we compared gene expres-
sion profiles of 469 OV samples downloaded from TCGA 
database. Heatmaps and PCA plots were used to visualize 
the distribution of gene expression profiles between high and 
low immune (or stromal) score groups in Figure 3A–D. A 
total of 487 genes were identified to be DEGs in the immune 
score group; 442 upregulated DEGs and 45 downregulated 
DEGs were identified in the groups with high compared with 
low immune scores, on the basis of p < 0.05 and FC > 1.5. In 
contrast, 449 genes were identified to be DEGs in the stro-
mal score group. Of these, 428 upregulated DEGs and 21 
downregulated DEGs were identified in the group with high 
compared with low stromal scores, on the basis of on p < 
0.05 and FC > 1.5. Similarly, volcano plots (Figure 3E, F) 
showed the distribution of upregulated and downregulated 
DEGs in the immune score and stromal score groups. Venn 
diagrams indicated 287 upregulated DEGs and 13 downreg-
ulated DEGs shared between the immune score and stro-
mal score groups (Figure 3G, H). Because only stromal 
scores showed a distinct association with OV prognosis, we 
focused on DEGs grouped by stromal score in the subse-
quent analysis.

GO function and KEGG pathway 
enrichment analysis of the 
identified DEGs

To predict the potential function of 428 upregulated DEGs 
in the stromal score group, we performed GO and KEGG 
pathway enrichment analysis of these genes. We identified 
355 GO terms of BP, 64 GO terms of CC, and 76 GO terms 

Figure 1 Overall flowchart of this study.
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Figure 2 Correlation of immune and stromal scores with clinicopathologic characteristics and OV prognosis. (A) Distribution of immune 
scores of OV subtypes (p < 0.0001). (B) Distribution of stromal scores of OV subtypes (p < 0.0001). (C) Comparisons of immune scores 
between BRCA1-mutant and wild-type patients (p = 0.0983). (D) Comparisons of stromal scores between BRCA1-mutant and wild-type 
patients (p = 0.3588). (E) Comparisons of immune scores between BRCA2-mutant and wild-type patients (p = 0.6634). (F) Comparisons of 
stromal scores between BRCA2-mutant and wild-type patients (p = 0.3797). (G) Kaplan-Meier survival curve for patients with low vs. high 
immune scores (p = 0.5707). (H) Kaplan-Meier survival curve for patients with low vs. high stromal scores (p = 0.0376).
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Figure 3 Identification and analysis of DEGs on the basis of immune and stromal scores. (A) Heatmap of the distribution of gene expression 
profiles between groups with high and low immune scores. Genes with higher and lower expression are shown in red and blue, respectively, 
and genes with the same level of expression are shown in black. (B) Heatmap of the distribution of gene expression profiles between groups 
with high and low stromal scores. (C) PCA plot of the distribution of gene expression profiles between groups with high and low immune 
scores. (D) PCA plot of the distribution of gene expression profiles between groups with high and low stromal scores. (E) Volcano plot of the 
distribution of upregulated DEGs and downregulated DEGs in the immune score group. Upregulated and downregulated DEGs are shown in 
red and green, respectively, and the other DEGs are shown in black. (F) Volcano plot of the distribution of upregulated DEGs and downreg-
ulated DEGs in the stromal score group. (G) Venn diagram showing the upregulated DEGs shared in the immune score and stromal score 
groups. (H) Venn diagram showing the downregulated DEGs shared between groups.

BIOI 2023
O

rig
in

al A
rticle



90 S. Li et al.: DOI: 10.15212/bioi-2022-0008

of MF with significant differences (p < 0.05). The top ten 
GO terms were identified, including immune response, 
extracellular space, and extracellular matrix structural con-
stituent (Figure 4A–C). In addition, a total of 54 KEGG 
pathway categories were significant (p < 0.05). The top 
ten KEGG pathway categories were identified, including 
Staphylococcus aureus infection, phagosome, and extra-
cellular matrix–receptor interaction, which were associated 
with immune responses (Figure 4D).

Correlation of DEG expression with 
OV prognosis
To estimate the possible role of DEGs in OS, we plotted 
Kaplan-Meier survival curves with the log-rank (Mantel-
Cox) test. Among the 428 upregulated DEGs in the stromal 
score group, a total of 44 DEGs were significantly associ-
ated with OV prognosis. Of these 44 DEGs, 26 DEGs (haz-
ard ratio (HR) > 1) clearly predicted poor outcomes for OV 
(p < 0.05; selected genes shown in Figure 5A–F).

PPI network of prognostic DEGs

To functionally explore the interactions among these prog-
nostic DEGs, we constructed a PPI network, which consisted 
of 41 nodes, with the STRING database and Cytoscape 
software. We defined the node color continuously accord-
ing to log (FC) values of prognostic DEGs in the network. 
Similarly, we identified the node size continuously on the 
basis of the degree value, which represented the number of 

connections to other nodes. In addition, we used Molecular 
Complex Detection (MCODE) software in Cytotype to con-
duct module analysis based on the PPI network constructed 
above. The most important module was chosen for further 
research. In this PPI network, MMP9, CXCL10, GZMB, 
CXCL9, CXCL11, CXCL13, C5AR1, GBP1, CD2, GBP2, 
and CX3CR1 were the notable nodes with higher degree 
values, because they showed strong associations with other 
nodes (Figure 6).

Validation of prognostic DEGs in 
an external cohort from the GEO 
database and IHC from THPA 
database

To determine whether the prognostic DEGs identified 
from TCGA database also had significant prognostic value 
in a different OV cohort, we obtained and analyzed gene 
expression signatures of 40 patients with OV from series 
GSE32063. As shown in Table 2, six genes (CH25H, 
CX3CR1, GFPT2, NBL1, TFPI2, and ZFP36) were verified 
to be significantly correlated with poor outcomes (p < 0.05, 
Figure 7A–F). Moreover, we used IHC from THPA data-
base to assess the protein expression differences in these 
six genes. As shown in Figure 8A–J, the protein expres-
sion of CX3CR1, GFPT2, NBL1, TFPI2, and ZFP36 in OV 
tissues was upregulated in OV compared with normal tis-
sues, in agreement with our previous results. However, we 
did not find protein expression differences in CH25H in the 
THPA database.

Figure 4 GO function and KEGG pathway enrichment analysis of upregulated DEGs in the stromal score group. Top ten GO terms of BP 
(A), CC (B), MF (C), and KEGG pathway categories (D). p-values were adjusted by the FDR.
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Discussion

Because the early symptoms and signs of OV are atypi-
cal or non-existent, most patients are initially diagnosed 
in an advanced stage with low 5-year survival rates [19]. 
Therefore, new methods to screen for early OV and new 
treatment strategies must be developed. Given the effects 
of the tumor microenvironment on OV, prognostication is 
crucial [20]. A better understanding of interaction between 
tumor-microenvironment components and OV prognosis is 
urgently needed. In this study, we identified several genes 
associated with the tumor microenvironment that predicted 
poor outcomes in patients with OV from TCGA database.

The mesenchymal subtype shows overexpression of 
several genes associated with the activated stroma at the 
molecular level [21], although the stromal cells of the mes-
enchymal subtype have not been well described. Stromal 
components have been recognized not only to be a scaffold 

for integrity of tissue structure, but also play a role in tum-
origenesis, growth, invasion, and metastasis [22, 23]. In this 
study, the molecular subtypes of patients with OV signifi-
cantly correlated with the stromal scores, which were high-
est in the mesenchymal subtype. We further compared the 
median survival of the groups with high and low stromal 
scores, and found that high stromal scores were associated 
with low median survival, thus indicating poor prognosis. 
Therefore, our results demonstrated that the mesenchymal 
subtype is associated with poor outcomes, in agreement with 
findings from previous reports [24]. Stromal components in 
the tumor microenvironment may significantly contribute to 
the behaviors of OV with mesenchymal subtype.

The prognostic value of BRCA1/BRCA2 mutations in OV 
remains unclear. Previous report have indicated better prog-
nosis in patients with BRCA2 mutation, but no significant 
difference in prognosis for patients with BRCA1 mutation 
compared with wild-type patients [25]. However, several 

Figure 5 Correlation of DEG expression with OV prognosis in TCGA. Kaplan-Meier survival curves of the selected DEGs, plotted by the 
comparison of groups with low (blue line) and high (red line) gene expression.
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studies have shown that patients with BRCA1 and BRCA2 
mutations have better outcomes than wild-type patients [26, 
27], whereas other studies have demonstrated no signifi-
cant difference [28]. Our study also indicated no significant 
prognostic difference, but the small sample sizes of BRCA1/
BRCA2 mutations might have led to inaccurate estimates of 
survival.

Increasing evidence indicates that tumor development 
is influenced not only by internal tumor cells but also by 
external tumor-microenvironment components [29–32]. 
However, these studies have paid limited attention to stromal 
components in the tumor microenvironment. In this study, 
in the gene expression profiles of 469 OV samples, we first 
analyzed 449 DEGs identified from a comparison between 
groups with high and low stromal scores, some of which par-
ticipated in the tumor microenvironment, as shown by GO 
function and KEGG pathway enrichment analysis. These 
findings were consistent with those from previous studies 
indicating that stromal components correlate with the forma-
tion of the tumor microenvironment in OV [33–35].

We performed survival analysis of these 449 genes and 
determined that 44 DEGs were significantly associated with 
OV prognosis, 26 of which clearly predicted poor prognosis. 
In addition, we constructed a PPI network of 44 DEGs and 
found that these genes were highly interrelated. CX3CR1 
[36], CRYAB [37, 38], TGFBI [39], TFPI2 [40], and GFPT2 
[41] have been reported to play crucial roles in stimulating 
tumor proliferation, invasion, and metastasis in patients with 
OV, thereby predicting poor prognosis.

We further validated six tumor-microenvironment- 
associated genes (CH25H, CX3CR1, NBL1, TFPI2, 
GFPT2, and ZFP36) significantly associated with poor 
outcomes in patients from a different OV cohort from the 
GEO database. The survival rate of patients with high 
expression of tumor-microenvironment-associated genes 
(CX3CR1, GFPT2, NBL1, TFPI2, and ZFP36) was signifi-
cantly lower than that of patients with low expression, thus 
suggesting that these genes may serve as biological targets 
to improve the prognosis of patients with OV. In addition, 
the protein expression of CX3CR1, GFPT2, NBL1, TFPI2, 
and ZFP36 was upregulated in OV tissues compared with 
normal tissues, on the basis of IHC data from the THPA 
database, thus strongly supporting our conclusions. As 
described above, among these six genes, the expression 
of CX3CR1 [36], TFPI2 [40], and GFPT2 [41] was asso-
ciated with poor prognosis in patients with OV. Although 
the remaining three genes, CH25H, NBL1, and ZFP36, 
have not previously been correlated with OV prognosis, our 
results suggest that these genes may be potential prognostic 
biomarkers for OV. The endoplasmic-reticulum-associated 
membrane protein CH25H has been shown to inhibit infec-
tion by several viruses through catalyzing cholesterol con-
version into 25-hydroxycholesterol [42]. Overexpression 

Figure 6 PPI networks of prognostic DEGs. Node color indicates log (FC) values of prognostic DEGs, and node size is based on degree 
value.

Table 2 6 DEGs Significantly Predicting Poor Outcomes in 
Patients with OV from TCGA and the GEO Cohorts (HR > 1, 
p < 0.05)

Gene Symbol  HR  p Value  95% CI, 
Lower

 95% CI, 
Upper

CH25H  1.268751  0.002297  0.085015  0.391050

CX3CR1  1.145661  0.001586  0.051601  0.220362

GFPT2  1.164861  0.045983  0.002721  0.302482

NBL1  1.154586  0.008032  0.037458  0.250025

TFPI2  1.074517  0.034037  0.005414  0.138328

ZFP36  1.118967  0.027078  0.012735  0.212076
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of NBL1 has been demonstrated to suppress tumor growth 
[43]. Furthermore, ZFP36 has been reported to play a key 
role in post-transcriptional regulation of tumor necrosis fac-
tor and the modulation of mRNA stability [44]. Thus, some 
previously overlooked genes may also be potential prognos-
tic biomarkers for OV.

Although Mairinger Fabian et al. [45] have identified 
tumor-microenvironment-associated genes in patients 
with OV, significant differences exist between that study 
and our study in terms of purpose, methods, and results. 
Mairinger Fabian et al. aimed to examine the putative 
role of the genetic tumor immune microenvironment in 
mediating differential chemotherapy response in patients 
with high-grade serous ovarian cancer. Furthermore, the 
investigators did not apply the ESTIMATE algorithm 
to evaluate the stromal scores and immune scores of 
patients with OV from TCGA database. The present study 
has an advantage in that it indicates the importance of 

tumor-microenvironment-associated genes as biological 
targets for OV prognosis and treatment by integrating a 
large OV tissue microarray with bioinformatics.

This study also has several limitations. First, few genes 
were associated with OV prognosis, possibly because the 
small sample size of OV cohort for validation. Second, this 
was a retrospective study using public databases. Because 
the database used for this study was from the United States 
and the validation database from Japan, there was regional 
differences between the two studies. Therefore, well- 
designed, prospective clinical studies combined with IHC 
and polymerase chain reaction analysis remain impera-
tive to further verify the prognostic value of these tumor-
microenvironment- associated genes, which may aid in the 
development of novel prognostic biomarkers and therapeutic 
targets for OV in clinical practice.

In conclusion, our findings suggest that tumor- 
microenvironment-associated genes (CX3CR1, GFPT2, 

Figure 7 Correlation of DEG expression with OV prognosis from the series GSE32063. Kaplan-Meier survival curves of the selected DEGs, 
plotted by the comparison of groups with low (blue line) and high (red line) gene expression.
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NBL1, TFPI2, and ZFP36) may serve as promising biomark-
ers for OV prognosis, with clinical implications for thera-
peutic strategies.
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