
70 BIOI  2023, Vol 4, No. 2, 70–72
https://bio-integration.org  doi: 10.15212/bioi-2022-0016 

© 2023 The Authors. Creative Commons Attribution 4.0 International License

In vivo Iron-Based Coordination Assembly 
for Disease Diagnosis and Treatment
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Supramolecular assembly is ubiquitous in 
living systems, thus enabling construction 
of a range of fascinating structures with 
intricate biological functions that meet the 
essential needs of organisms [1, 2]. A typ-
ical example is metal-organic coordination 
assembly: in the light-harvesting complexes 
of photosynthetic systems, chromophores 
with metal-ion centers are assembled via 
coordination with histidineimidazole in pro-
teins, thus forming particular arrangements 
that absorb light energy [3]. Furthermore, 
phenolic-iron coordination bonding has 
been implicated in various properties (e.g., 
mechanical and adhesive functions) of 
mussel byssus cuticle [4]. These natural 
phenomena may provide valuable inspira-
tion for developing metal-organic- assembly 
materials and strategies for biomedical 
applications [5–7].

Given the unique chemistry and bio-
logical functions of iron, recent research 
endeavors have paid particular attention 
to iron-based supramolecular assembly 
in vitro and in vivo, aiming at the develop-
ment of desirable agents and nanomaterials 
for disease diagnosis and treatment [8, 9]. 
In in biological systems, iron ions are usu-
ally bound to molecules with electron-do-
nating atoms (e.g., oxygen and sulfur). 
This characteristic has inspired pioneering 
work on in vitro nanomaterial assembly 
using iron-based coordination, wherein 
interactions between FeIII and various oxy-
gen- and/or sulfur-containing therapeutics 
lead to the assembly of multifunctional 

theranostic nanoparticles. For example, 
co-assembly of photosensitizers (sinopo-
rphyrin sodium) and chemotherapeutics 
(doxorubicin) with FeIII has enabled the 
formulation of metal-organic nanodrugs 
[10]. The reversible nature of coordination 
bonding has enabled biological barriers to 
nanoparticle delivery to be overcome. The 
metal-organic nanodrugs maintain their 
structures in the blood circulation under 
neutral pH (∼ 4) but steadily decompose 
into small drug complexes under the acidic 
(pH 5.5) tumor micro environment, thereby 
enhancing intratumor drug permeability 
for effective image-guided photodynamic/
chemo combinational therapy.

To address the limited tissue penetration 
of photodynamic therapeutics, researchers 
have engineered metal-organic nanostruc-
tures for cancer sonodynamic therapy using 
ultrasound, whose deep tissue penetration 
triggers generation of reactive oxygen spe-
cies (ROS), which kill cancer cells [11, 
12]. Several smart cancer sonotheranostics 
have been fabricated through  co-assembly 
of FeIII and organic sonosensitizers with a 
sulfonate group [e.g., meso-tetrakis (4-sul-
fonatophenyl) porphyrin, indocyanine 
green (ICG)], and other compounds and 
therapeutics [13, 14]. In a recent study, Lin 
et al. have reported microbubbles (MBs) 
loaded with FeIII/ICG coordination com-
plexes for cancer sonotheranostics [14]. 
Ultrasound not only triggers in situ conver-
sion of MBs into small FeIII/ICG nanocom-
plexes with better tissue penetration but 
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Abstract

Advances in in vivo iron-based coordination assembly have enabled the simultaneous detection and treat-
ment of iron-overload disorders. Specific interactions between local FeIII and organic ligands (e.g., indocya-
nine green and lecithin) facilitate magnetic resonance imaging with enhanced sensitivity and photoacoustic 
imaging with high contrast, thus overcoming the longstanding limitations of traditional iron quantification 
approaches. Moreover, enhanced iron depletion can also be achieved in murine genetic models of iron-over-
load disorders. These advances provide great promise in interdisciplinary leveraging of biology, medicine 
and materials science to design nanomedicines for addressing unmet clinical needs.
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also induces transient opening of leaky tumor vessels. These 
multiple benefits contribute to a 1.3-fold enhancement in 
tumoral deposition of FeIII/ICG@MBs, thus increasing ultra-
sound-mediated ROS generation for tumor ablation.

Encouraged by the positive results regarding in vitro 
material assembly, Lin et al. subsequently applied in vivo 
iron-based assembly to noninvasive diagnosis and treatment 
of iron-overload diseases (Figure 1) [15]. Iron-overloaded 
organs have abundant FeIII ions available for assembly 
with administered organic ligands and/or dyes. Such in situ 
assembly can alter iron and ligand forms (e.g., from free to 
aggregated), thus amplifying alterations in molecular-im-
aging signals and enabling iron detection. Specifically, the 
authors have designed an elegant ICG/lecithin (ICG/Leci) 
system in which the interaction between ICG and local FeIII 
in the iron-overloaded liver is accelerated by co-admin-
istered Leci, thus forming FeIII/ICG/Leci aggregates. The 
free-to-aggregate conversion by the ICG/Leci system offers 
several notable advantages as multimodal theranostics: i) 
the FeIII/ICG/Leci aggregation obstructs the water exchange 
rate with FeIII and significantly decreases MRI signals in the 
iron-overloaded liver, thereby enabling the detection of FeIII 
through MRI; ii) π-π stacking between ICG and Leci results 
in UV-visible absorption at 890 nm, thus allowing for FeIII 
quantification through photoacoustic imaging with strong 
contrast and high sensitivity; iii) the FeIII/ICG/Leci assem-
bly alters the iron excretion pathway and facilitates twice the 
iron depletion of deferoxamine (a commonly investigated 
iron chelator), thus achieving better kinetics while avoiding 
toxicity.

This study provides a promising example of how iron-
based coordination assembly can be leveraged to address 
unmet clinical needs. Liver biopsy, which remains the cur-
rent gold standard for diagnosis of iron-overload diseases, 
is limited by sampling errors due to the nonuniform iron 

distribution in organs, and the possible risk of hospitaliza-
tion (1–3%) [16]. Although MRI is becoming a more accept-
able approach, its low sensitivity restricts its accuracy in 
iron quantification. The developed ICG/Leci system, with 
its enhanced MRI sensitivity and superior photoacoustic- 
imaging contrast, may aid in addressing the above issues 
and providing accurate, noninvasive diagnosis of iron-over-
loaded liver. When coupled with augmented iron depletion, 
the ICG/Leci system offers a powerful imaging-guided thera-
nostic platform for iron-overload disorders. Interdisciplinary 
knowledge is highly desired for nanomedicine design, in 
which the properties of agents and nanomaterials are tailored 
according to biological and medical needs. This successful 
work is expected to inspire the development of more smart 
probes based on metal-organic assembly for diagnosis and 
therapeutic purposes.
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Figure 1  Schematic graph showing recent advances in iron-based coordination assembly, from nanotherapeutic assembly in vitro to in situ 
iron-based assembly in vivo for iron quantification and depletion [15].
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