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Introduction

Biomaterials function in close contact with 
living tissue and may replace parts of a liv-
ing system to augment, repair, or restore 
body function [1]. These materials can 
be derived from (i) natural sources, such 
as starch, chitosan, collagen, and bone; 
(ii) synthetic sources, in which a range of 
chemical reactions can be generated in a 
laboratory to produce biomaterials from 
not only metallic components but also 
polymeric and ceramic materials; or (iii) 
semi-synthetic or hybrid sources consisting 
of both natural and synthetic materials [1]. 
Biomaterials have diverse mechanical, bio-
logical, physical, and chemical properties 
that help them function properly and ena-
ble applications in or on the human body.

The field of biomaterials, particularly 
the development of biomedical devices 
and tissue engineering for human bene-
fits, was established rapidly. Currently, 
thousands of biomedical devices and diag-
nostic products are being applied to facil-
itate the capability of human tissues or 
organs to regenerate after deterioration and 
restore normal bodily function [2]. More 
than 6000 types of medical devices have 
been listed in the Medical Device Product 
Classification Database regulated by the 

Food & Drug Administration’s Center for 
Medical Devices and Radiological Health, 
to ensure their safety and effectiveness [3]. 
A variety of devices and materials, such as 
cardiac pacemakers, bone plates, artificial 
heart valves, nerve stimulators, and artifi-
cial knee joints, are currently being applied 
in the treatment of human disease or injury.

During the past two centuries, evidence 
of the use of biomaterials as implants and 
prostheses has been discovered on various 
Roman, Egyptian, Greek, and Etruscan 
human body parts, such as in skeletons or 
skulls, thus indicating that biomaterials 
have been used in or on the human body 
since ancient times [4]. The use of bioma-
terials dramatically accelerated after World 
War II. Many newly developed high- 
performance metal, ceramic, and particu-
larly polymeric materials were developed, 
and have been used to construct medical 
devices to repair or replace damaged body 
parts or tissues [5]. Biomaterials can be 
classified in many ways according to their 
functionality in the human body and their 
material properties. This review highlights 
the classification of biomaterials and their 
applications in the medical field. Current 
trends in the use of biomaterials for disease 
treatments, such as drug delivery and can-
cer immunotherapy, are also discussed.
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Abstract

Biomaterials are natural, synthetic, or hybrid materials, which are used in medical devices or implants that 
are placed in contact with the human biological system to compensate for or restore diminished functions 
of the body. The field of biomaterials has rapidly developed to meet the ever-expanding needs in healthcare 
and medicine practices. Advancements in science and technology have enabled the fabrication and reengi-
neering of biomaterials into useful medical devices or implants, such as heart valves, bone plates, hip joints, 
and cardiac pacemakers. Because biomaterials are placed in continuous close contact with the recipient’s 
body fluids or tissues, the classification of available biomaterials is crucial for selecting safer and highly 
biocompatible materials. This review focuses on biomaterial classification, namely bioceramic, polymeric, 
and metallic biomaterials. Their medical applications, advantages, and disadvantages are discussed. Current 
trends in biomaterials involved in disease treatments, such as controlled drug delivery and cancer therapy, 
are additionally explored.
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Classification and medical 
applications of biomaterials

The functions of biomaterials in the medical field have 
markedly changed with advances in science and techno-
logy. The continual and ever-expanding practical needs 
in healthcare and medicine practices have significantly 
driven developments in the biomaterial field and its appli-
cations. Biomaterials can be classified in several ways, 
often according to their human body functionality and 
material properties [6]. First, biomaterials can be classi-
fied at the organ and system levels of the human body. For 
example, at the system level, the skeletal system can be 
repaired and restored with a joint replacement and bone 
plate; at the organ level, the human heart can be repaired 
and replaced by an artificial heart valve, total valve, and 
cardiac pacemaker. Second, biomaterials may be catego-
rized according to the body parts treated. For example, an 
artificial hip joint and a kidney dialysis machine can be 
used to replace damaged or diseased body parts, whereas 
screws, sutures, and bone plates can assist in wound heal-
ing. Table 1 reviews the classification of biomaterials in 
medical applications, according to organs, systems, and 
other parts of the body.

The third classification of biomaterials is based on to 
their material properties in three categories: bioceramic, 
polymeric, and metallic [22]. The vast variety of available 
 biomaterials enhances the choice of materials for specific 
treatment purposes; for example, chemically inert metals 
may be chosen for high electroconductivity as electrodes 
in artificial organs and long-lasting restoration of lost body 
function. Nevertheless, biodegradable materials, such as 
sutures, can be used as a temporary framework for patients 
in whom function or lost tissue can be regenerated [1, 23]. 
Furthermore, some biomaterials, such as coronary and 
peripheral stents, are bioabsorbable and are used in cardio-
vascular implants. They are slowly eliminated from the body 
after fulfilling a function [24].

Bioceramic biomaterials

Bioceramic biomaterials are fabricated from non- metallic 
and metallic elements held together by covalent and/or 
ionic bonds [25]. Oxides, such as aluminum oxide (Al

2
O

3
), 

magnesium oxide (MgO), and silicon dioxide (SiO
2
), con-

tain both non-metallic and metallic components, whereas 
ionic salts can form polycrystalline aggregates (such as 
ZnS, CsCl, and NaCl). Other common examples of ceramic 
materials are diamond and carbonaceous structures, which 
are usually covalently bonded. The strong covalent and ionic 
bonds between the ceramic elements make them hard, brit-
tle, and stiff [26]. Consequently, the planes of atoms/ions in 
the ceramics do not easily slip past one another.

Ceramics and their composites have the potential to be 
used as medical devices to enhance or restore various parts 
of the body, owing to advances in science and technology. 
Consequently, various bioceramic devices or implants, 
including hip prostheses, bone grafts, and artificial tendons, 
have been developed for medical use. To be designated as 
bioceramics, the materials must have several important 
features after being placed in the recipient’s body, includ-
ing non-inflammatory, non-allergic, biofunctional, bio-
compatible, carcinogen-free, and non-toxic characteristics 
[27]. Furthermore, ceramics have been regularly used in 
dentistry applications, because they are relatively inert to 
bodily fluids such as saliva, and have aesthetically favora-
ble appearance and excellent compressive strength [28]. 
Recently, bioceramics have shown immense medical appli-
cations in controlled drug delivery, gene therapies, and can-
cer  therapies [29].

Bioceramics such as black pyrolytic carbons have been 
used in cardiovascular implants, particularly for blood inter-
facing applications such as heart valves. Although their 
unappealing color is a disadvantage, particularly in dental 
applications, pyrolytic carbons are simple to make and have 
acceptable biocompatibility in the human body [30]. They 
are also being used as composite implant materials and sup-
porting components for tensile loading applications, such 

Table 1  Classification of Biomaterials in Medical Applications, on the Basis of Organs, Systems, and Other Parts of the Body

Classification  Examples  References
Classification of 
biomaterials in 
medical applications 
based on body organs

  Eyes   Intraocular lenses   [7]
  Ears   Artificial stapes and cochlear implants   [8]
  Kidneys   Kidney dialysis machines   [9]
  Bladder   Catheters and stents   [8]

Classification of 
biomaterials in 
medical applications 
based on different 
body systems

  Nervous   Nerve stimulators   [10]
  Circulatory   Artificial blood vessels   [11]
  Skeletal   Joint replacement and bone plates   [12]
  Muscular   Muscle stimulators and sutures   [13, 14]
  Respiratory   Tracheal stents   [15]
  Urinary   Catheters, stents, and kidney dialysis machines   [8, 9]
  Integumentary   Sutures, burn dressings, and artificial skin   [16, 17]

Classification of 
biomaterials in 
medical applications 
based on other body 
parts

  Improve body parts’ functions   Cardiac pacemakers   [18]
  Aid in healing   Sutures, screws, and bone plates   [12, 19, 20]
  Substitute for a broken part   Hip joint prostheses   [12]
  Assist in treatment   Catheters and drains   [8]
  Aid in diagnosis   Probes and catheters   [21]
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as artificial ligaments and tendons, mainly because of their 
highly biocompatibility with the human body and their high 
specific strength as fibers [30].

Three types of ceramics can be used to make implants: 
(i) resorbable or biodegradable (non-inert) ceramics, such 
as calcium phosphate and calcium aluminate, (ii) surface 
reactive or bioactive (semi-inert) ceramics, such as glass 
ceramics and hydroxyapatites, and (iii) non-absorbable (rel-
atively inert) ceramics, such as alumina, zirconia, and car-
bons [31]. The medical applications of different bioceramics 
are listed in Table 2.

Fabricating bioceramics as medical devices or implants 
provides several advantages. For instance, these materials 
are resistant to corrosion and can withstand high compres-
sion strength. They also demonstrate excellent benefits as 
bioactive/inert materials in the human body, such as in artic-
ulating surfaces subjected to loads and friction. However, the 
use of bioceramics as biomaterials is limited by their ten-
dency to have low fracture toughness and low strength in 
tension. Therefore, a high force could cause them to shatter 
or crack [31]. In addition, their fabrication is challenging.

Polymeric biomaterials

Polymers applied in biomaterials comprise naturally derived 
polymers and synthetic polymers, which are either biode-
gradable or non-biodegradable [41]. Naturally occurring 
polymers such as starch, collagen, and chitin are frequently 
used as biomaterials because they are biodegradable and 
easily obtained. In contrast, synthetic polymers are a main-
stream polymer biomaterial widely used in prosthetic mate-
rials, dental materials, disposable medical supplies, and 
medical implants.

Most non-biodegradable synthetic polymers were ini-
tially created for non-medical purposes. However, their 

physical-mechanical qualities essentially identical to those 
of human soft tissues have led to their wide application as 
biomedical materials in or on the human body. Currently, 
many medical applications use various synthetic polymeric 
materials, including polypropylene, polyethylene, polymeth-
ylmethacrylate, polyethylenterephthalate, and polyurethane 
[41, 42]. The medical applications of these polymeric bio-
materials are listed in Table 3.

Polymers are better biomaterials than metals or ceramics 
because of their ease of manufacturability in diverse forms 
such as fibers, films, sheets, and synthetic latex. Beyond 
that, they can be easily processed, have reasonable costs, and 
are available with desired physical and mechanical proper-
ties [48]. Several disadvantages of polymeric biomaterials 
include that they absorb water and protein in the human 
body; their surfaces are easily contaminated and difficult to 
sterilize; they are leachable compounds; they undergo bio-
degradation; and they are prone to wear and breakdown. In 
addition, the massive use of non-biodegradable polymers 
also poses challenges regarding environmental pollution and 
waste management [49, 50].

Metallic biomaterials

Metals’ excellent thermal and electrical conductivity make 
them among the most extensively used biomaterials [51]. 
They have been widely applied in artificial heart valves, 
including pacemaker leads and vascular stents [51, 52]. 
Moreover, load-bearing implants, such as hip and knee 
replacements, mostly use metallic biomaterials, because 
of their exceptional corrosion resistance and mechanical 
properties.

Beyond pure metal, alloys of metals with two or more ele-
ments are also frequently applied in producing biomaterials. 
These alloys are usually generated by surface modification, 

Table 2  Medical Applications of Bioceramic Biomaterials

Types of Bioceramic Biomaterials  Medical Applications  References
Resorbable or 
biodegradable (non-inert)

  Calcium aluminate   Dental restorative products, orthopedic applications   [32]
  Calcium phosphate   Artificial bones, teeth, knees, hips, tendons, ligaments   [31, 33]

Surface reactive or 
bioactive (semi-inert)

  Glass-ceramic   Bone augmentation and restoration   [34]
  Hydroxyapatite   Fillers, bone grafts, coatings for metal implants   [35]

Non-absorbable (inert)   Alumina   Dental and bone implants, hip prostheses   [36]
  Carbon   Heart valves, bone scaffolds, cartilage regeneration   [37, 38]
  Silicon nitride   Spinal fusion implants   [39]
  Zirconia   Hip joint replacement, tooth implants   [28, 40]

Table 3  Medical Applications of Polymeric Biomaterials

Types of Polymeric Biomaterials  Medical Applications  References
Polypropylene   Hernia repair, blood oxygenator membranes, artificial vascular grafts, 

degradable sutures
  [41, 43]

Polyethylene   Surgical implants, tendons, tubing for drains and catheters, acetabular liners   [41, 44, 45]
Polymethylmethacrylate   Artificial teeth, provisional crowns, bone cement   [41, 46]
Polyethylenterephthalate   Artificial vascular grafts, heart valves   [41]
Polyurethane   Wound dressings, breast implants, cardiac patches, drug delivery vehicles, 

vascular grafts, tracheal soft tissue
  [41, 47]
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such as coating with bioactive ceramics and polymeric thin 
films, or surface structuring, thereby enhancing corrosion 
resistance and increasing the material strength. Currently, 
three major material groups dominate the metallic biomateri-
als: pure titanium (Ti) or titanium alloys such as Ti-6Al-4V; 
stainless steel; and cobalt-chromium (Co-Cr) alloys [51, 53]. 
Several considerations that influence the selection of metals 
and alloys as biomaterials in medical applications are appro-
priate physical and mechanical properties, reasonable cost, 
corrosion resistance, and biocompatibility [54]. Table 4 
summarizes the medicinal applications of these three types 
of metallic biomaterials.

Ti-6Al-4V is currently one of the most broadly used 
and desirable metallic biomaterials in medical applica-
tions, because of its outstanding properties: it is stronger, 
lighter, and more resistant to corrosion in the human body 
than stainless steel and Co-Cr alloys. However, Ti-6Al-4V 
has been reported to have issues in articulation surfaces in 
human bones, because it is less elastic and prone to wear 
and tear [58]. Moreover, the vanadium present in the alloy 
has the potential for adverse tissue and cytotoxicity reac-
tions [59]. Over time, leached vanadium and aluminum 
can result in long-term neurodegenerative diseases such as 
Alzheimer’s disease and Parkinson’s disease [60, 61]. The 
leached vanadium and aluminum ions in the human body 
also affect the respiratory and reproductive systems [59, 62]. 
Several recent studies have synthesized different coatings on 
Ti-6Al-4V alloys to increase their biocompatibility and cor-
rosion resistance to the human body [63, 64].

Metals are beneficial as biomaterials because they pos-
sess corrosion resistance, wear resistance, and high strength. 
Furthermore, their ease of sterilization and fabrication, and 
their shape memory capabilities have led to their extensive 
use as biomaterials in medical applications. However, the 
drawbacks of using metallic biomaterials in the human body 
are their high modulus, cytotoxicity, easy corrosion, and 
metal ion sensitivity.

Current trends in biomaterials 
in medical applications

The advancements in science and technology have shifted 
trends in biomaterial functions. Biomaterials have recently 
been applied in disease treatments including drug delivery 
into cells, cancer immunotherapy, cell regeneration, and 
antimicrobial treatment, among many others. Several types 
of biomaterials have been used in these applications, includ-
ing polymer-based biomaterials, lipid-based biomaterials, 
and inorganic biomaterials.

Polymer-based biomaterials
Hydrogels are polymer-based biomaterials widely used in 
disease treatment. Hydrogels may exist naturally or may 
be derived synthetically. Chitosan, fibrin, and alginate are 
examples of hydrogels of natural origin, whereas poly(vi-
nyl alcohol) is an example of a synthetic hydrogel. Owing 
to their gelation properties, hydrogels have been used to 
carry DNAs, mRNA, proteins, or cytokines for disease treat-
ments, such as in cancer immunotherapy and chemotherapy 
[65–70]. Interestingly, hydrogels’ clinical potential in treat-
ing systemic sclerosis and inflammatory airway disease have 
recently been reported [71, 72], thus illustrating their prom-
ise in medical applications for treating other human diseases.

Micelles are another polymer-based biomaterial with 
important roles in drug delivery and cancer immunotherapy. 
Micelles are amphiphilic polymers assembled as nanosized 
particles that can deliver drugs to draining lymph nodes and 
therefore promote systemic drug administration. A recent 
study has constructed polypeptide-based micelles that regu-
late the tumor microenvironment and assist in inhibiting tumor 
cell metastasis [73]. Ren et al. [74] have also reported that 
micelles can be covalently bonded with chemically modified 
short peptide antigens to allow for effective delivery into den-
dritic cells for robust cellular immune responses (Figure 1), 
thus suggesting their potential in anti-cancer vaccine develop-
ment and supporting their exploration as a component of can-
cer immunotherapy. Intriguingly, using micelles as a vehicle 
for ligand delivery in combination with chemotherapy drugs 
has recently been found to significantly increase selective 
immunogenic cell death in triple-negative breast cancer [75], 
an aggressive and deadly breast cancer type that lacks targeted 
therapy and has a poor prognosis because of high metastasis.

The blood-brain barrier (BBB) is a major challenge pre-
venting effective systemic drug administration in the treat-
ment of brain diseases. Lammers et al. [76] have  demonstrated 
that poly(butylcyanoacrylate)-based microbubbles encased 
in ultrasmall superparamagnetic iron oxide nanoparticles can 
mediate and monitor BBB permeability in a mouse model. 
Another study in canines has reported that polymeric mag-
netite nanoparticles encapsulating chemotherapy drugs 
bypass[ing] the BBB and facilitate the delivery to intracranial 
tumors after infusion by convection-enhanced delivery [77]. 
The spatial control and bypassing of the BBB are critical for 
drug delivery in treating brain disorders such as brain tumors, 
Alzheimer’s disease, and Parkinson’s disease.

Lipid-based biomaterials

Liposomes are lipid-based biomaterials that are highly suc-
cessful and commonly highlighted in disease treatments. 

Table 4  Medical Applications of Metallic Biomaterials

Types of Metallic Biomaterials  Medical Applications  References
Pure titanium (Ti) and titanium alloys (Ti-6Al-4V)   Conductive leads, screws, joint prostheses   [55]
Stainless steel   Vascular stents, fracture plates, guide wires   [56]
Cobalt-chromium (Co-Cr) alloys   Dental apparatus, artificial cardiac valves, 

joint replacement, screws, fracture plates
  [57]
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They are spherical vesicles made of phospholipid bilay-
ers that encapsulate various types of therapeutic drugs. 
Hydrophilic drugs are enclosed within the center aqueous 
region, and hydrophobic drugs are entrapped within the 
lipid bilayers [78]. These features make liposomes an effec-
tive biomaterials for disease treatments. Since 1986, many 
liposome products have been licensed for medical appli-
cations, such as delivering chemotherapy drugs for cancer 
treatments, encapsulating inactivated viruses for vaccina-
tion purposes, delivering antibiotics for antimicrobial ther-
apy, delivering painkiller drugs for pain management, and 
even hormone therapy [79]. Furthermore, several investi-
gations have shown that liposomes might be used in can-
cer immunotherapy and as nanocarriers of imaging agents 
to improve clinical diagnosis and treatment [80–84]. In a 
rat glioma model, targeted ultrasound technology has been 

used to temporarily permeabilize the BBB with doxorubicin 
hydrochloride drugs contained in long-circulating pegylated 
liposomes [85]. This exciting finding provides insights into 
future drug delivery into the brain. Recently, liposome-based 
mRNA vaccines for COVID-19 have been developed by 
Moderna and Pfizer/BioNTech, exploiting the excellent abil-
ity of liposomes to protect mRNAs against degradation by 
nucleases in the blood circulation and allow the mRNAs to 
easily enter the cytoplasm of cells through endocytosis [86].

Inorganic biomaterials

Gold nanoparticles are an inorganic biomaterial that has 
been extensively studied in disease treatments. According 
to Li et al. [87], the use of gold nanorods in photothermal 

Figure 1  A system for delivery of short peptide antigens to dendritic cells for strong T-cell responses, on the basis of block copolymers 
chemically modified with a hydrophobic and self-immolative linker. The micelles effectively capture antigens and adjuvants via a covalent 
bond after modification [74]. Reproduced with permission from the American Chemical Society, 2022.

Figure 2  T-cells were  transduced  to  express  a melanoma-specific T-cell  receptor  and  labeled with  gold  nanoparticles  as  a  computed 
tomography contrast agent to examine the distribution, migration, and kinetics of T-cells [89]. Reproduced with permission from the American 
Chemical Society, 2015.
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therapy in combination with chemotherapy enhances 
cancer treatment efficiency and modulates the tumor 
microenvironment. Another study has found that radio-
isotope-labeled gold nanoclusters allow for the activa-
tion of dendritic cells and subsequently induce long-term 
anti-cancer immunity in a mouse model, by eliminating 
primary tumors and suppressing distant-tumor develop-
ment [88]. Furthermore, gold nanoparticles have been 
found to aid in effective imaging by coating with can-
cer-specific T-cell receptors as a computed tomography 
contrast agent, thereby allowing for easy observation of 
T-cell migration, distribution, and kinetics under imaging 
(Figure 2) [89]. Although most research remains in ani-
mal-trial stages, gold nanoparticles appear to have great 
potential in human cancer treatment.

Another inorganic biomaterial, silica nanoparticles, also 
have anti-cancer properties after being doped with elements 
such as calcium, magnesium, and zinc [90]. These doped 
mesoporous silica nanospheres have been found to increase 
CD4+ and CD8+ T-cells in the spleen and stimulate an 
anti-cancer immune response. In addition, Kakizawa et al. 
[91] have found that silica nanoparticles coated with specific 
amino acids and incubated with dendritic cells and ligands 
induce the production of crucial cytokines, such as IL-1 
and IFN, thereby implying that silica nanoparticles might 
be used as a carrier for cellular immunotherapy. Moreover, 
silica nanoparticles have been widely used in creating vac-
cines against bacteria and viruses such as Mycoplasma hyo-
pneumoniae, hepatitis B, and most recently, SARS-CoV-2 
[92–95]. These vaccinations, however, remain in pre-clinical 
stages.

Conclusions and outlook

This review discussed the classification of biomaterials and 
their medical applications. Developments in biomaterials 
have led to the fabrication and reengineering of various highly 
promising medical devices or implants to restore the func-
tions of the human body. Bioceramic, polymeric, and metallic 
biomaterials are beneficial to humankind. Nonetheless, their 
application poses challenges, such as environmental pollu-
tion and substantial waste disposal resulting from the massive 
use of non-biodegradable synthetic polymeric biomaterials. 
Most recently developed biomaterials used in drug delivery 
and cancer therapy remain in early stages of development, 
facing hurdles relating to biocompatibility, biosafety, and 
toxicity. Thus, new biomaterials that are environmentally 
friendly and highly biocompatible with the human body will 
have enormous potential in medical applications.
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