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Section Discrepancy and Diagnostic 
Performance of Breast Lesions in Two-
dimensional Ultrasound by Dynamic 
Videos versus Static Images
Dinghong Yang1,a, Xiaoyun Xiao1,a, Haohu Wang1, Huan Wu1, Wei Qin1, Xiaofeng Guan1, Qiongchao Jiang1,* 
and Baoming Luo1,*

Introduction

Breast cancer has become the most com-
mon cancer in women in the latest data of 
global cancer [1]. The 5-year survival rate 
of breast cancer patients varied signifi-
cantly with stage of initial diagnosis (98% 
for stage I and 27% for stage IV) [2]. Thus, 
early detection of breast cancer is crucial 
[3]. Ultrasound (US) has been one of the 
most widely used modalities for breast 
cancer diagnosis owing to it being nonin-
vasive and nonradiative, convenient, and 
cost- effective [4]. In addition, to narrow 
variability in characterization and final 

assessment of breast lesions identified on 
ultrasonography, the Breast Imaging Report 
and Data System (BI-RADS®) proposed by 
the American College of Radiology (ACR) 
unified and standardized the US lexicon 
and classification [5].

US could assess the morphologies, ori-
entations, internal structures, and margins 
of lesions from multiple planes with high 
resolution both in predominantly fatty 
breasts and in dense glandular structures 
[6]. However, sonographic manifestations 
of the lesions varied in different sections 
due to different growth patterns of the 
lesions and the influences of surround-
ing tissue compositions [7]. For example, 
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Abstract

Background: Benign or malignant breast lesions with typical ultrasonic characteristics could be easily 
and correctly diagnosed with two-dimensional ultrasound (2D US). However, diagnosis of atypical lesions 
remains a challenge. Most atypical lesions have different ultrasonographic features with probe direction 
variation. Thus, the interpretation of ultrasonographic features based on static images empirically collected 
by sonographers might be inaccurate. We aimed to investigate the section discrepancy and diagnostic perfor-
mance of breast lesions in 2D US by dynamic videos versus static images.
Methods: Static images and dynamic videos based on two perpendicular planes of 468 breast lesions were 
collected and evaluated. The Breast Imaging and Reporting Data System (BI-RADS®) US lexicon was used. 
Category 3 was used as the cut-off point, and section discrepancy was defined as two perpendicular planes 
showing different BI-RADS categories (3 versus 4A, 4B, 4C, and 5).
Results: This retrospective study included 315 benign and 153 malignant lesions. There were 53 and 50 
lesions with section discrepancy during static and dynamic observations, respectively. The proportion of 
benign lesions with section discrepancy was significantly higher than that of malignant lesions (P < 0.05) 
either in dynamic or static observation, and the contingency coefficient was 0.2 between section discrep-
ancy and histopathology. Duct changes were more clearly depicted in dynamic videos than in static images 
(P < 0.05) both in malignant and benign lesions. Calcification and architectural distortion were more sensi-
tively detected by dynamic videos than with static images (P < 0.05) in malignant lesions. The interpretation 
of “margin” significantly differed in benign lesions between static images and dynamic videos (P < 0.05). 
The areas under the curve of static image-horizontal, static image-sagittal, dynamic video-horizontal, and 
dynamic video-sagittal were 0.807, 0.820, 0.837, and 0.846, respectively. The specificities of dynamic videos 
were higher than those of static images (P < 0.05).
Conclusion: Breast lesions have section discrepancy in 2D US. Observations based on dynamic videos could 
more accurately reflect lesion features and increase the specificity of US in the differentiation of atypical 
breast lesions.
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ductal carcinoma in situ (DCIS) was reported to grow 
faster in the radial direction than in the anti-radial plane 
[8]. The visualizations of handheld US images commonly 
used as documentation usually depended on the informa-
tion collected in one certain orientation, which was empir-
ically selected by the operator [9]. Thus, the features of 
lesions reflected only in the static images were likely to 
be inaccurate. Besides, the examiner could gain impor-
tant information about surrounding tissue characteristics 
of the lesions by dynamic US scanning. This information, 
however, was likely incomplete when the lesion was doc-
umented as static images.

In theory, these shortcomings of static image documen-
tation could be overcome by recording the breast lesion as 
videos [10]. To date, there had been only two studies com-
paring video and static images of breast lesions with respect 
to sonographic assessment and diagnostic performance. An 
article reported that the echogenic halo, orientation, and 
margin varied while comparing video and static images [11]. 
Meanwhile, another study showed that the inter-observer 
variability and diagnostic performance of video clips were 
similar to those of static images [12]. Thus, whether dynamic 
observation is superior to static observation needs further 
study.

Regarding the possible discrepancy ultrasonographic fea-
tures in different sections of the lesions, we hypothesized 
that the benign and malignant tendencies of the lesions prob-
ably were not consistent when lesions were viewed in differ-
ent directions. Previous studies found that the results of the 
quantitative evaluation of breast magnetic resonance imag-
ing and elastography in different directions were different 
for some atypical lesions, especially malignant lesions. The 
role of section discrepancy was also explored in the identi-
fication of benign and malignant lesions using elastography 
[13–16]. Nevertheless, whether this rule was applicable in 
2D US remains to be studied.

To the best of our knowledge, there was no research com-
paring diagnostic performance and consistency of dynamic 

videos and static images between different sections. 
Therefore, the purposes of this study were to investigate if 
there were section discrepancy in 2D US and to investigate 
the diagnostic performance of 2D US based on dynamic vid-
eos and static images of breast lesions.

Materials and methods

Patients

The institutional review board approved this retrospec-
tive study, and the requirement for informed consent was 
waived. From September 2018 to April 2020, 723 consecu-
tive women scheduled for breast surgery underwent breast 
US examinations. The inclusion criteria were presence of 
a solid mass that occupied space and could be detected 
in two perpendicular planes with US and available final 
pathology. The exclusion criteria are presented in Figure 1. 
Finally, 449 women with 468 breast lesions were included 
in the study.

Image acquisition

All examinations were performed using the US device 
Oxana2 (ACUSON Oxana Series; Siemens, Munich, 
Germany). The frequency range of the probe was 6-12 
MHz. All the examinations were performed by the same 
doctor, who have more than 15 years of experience in 
breast US. For each lesion, at least three static images were 
obtained: two representative two-dimensional (2D) static 
images in two perpendicular planes (horizontal and sag-
ittal) and an image with marked maximum diameter and 
depth of the lesion. Two corresponding real-time scans of 
the breast lesion based on horizontal and sagittal planes 

Figure 1  Flow chart of patient selection.
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were collected. The scan range of each video was from 
“normal glandular tissue–lesion emergence–lesion com-
plete display–lesion disappearance–normal glandular tis-
sue.” Each dynamic videos lasted for about 10 seconds. 
All the static images and dynamic videos were saved for 
further analysis.

Image evaluation

Independent and blinded image evaluation were performed 
by two observers with 15 and 3 years of breast sonogra-
phy experience, respectively. All the data were verified, 
and any conflict was resolved by consensus. For lesion 
assessment, the Breast Imaging and Reporting Data System 
(BI-RADS®) US lexicon [5] was used. Suspicious US fea-
tures were defined based on previous studies and the cri-
teria for BI-RADS 4 subcategorization were established 
according to Li’s research [17]. Suspicious 2D character-
istics were divided into malignant and auxiliary malignant 
signs. Malignant signs included irregular shape, nonpar-
allel orientation, non-circumscribed margin (indistinct, 
spiculated, microlobulated, or angular), posterior shadow-
ing, microcalcification in the mass, and intraductal calci-
fication. Auxiliary malignant signs included round shape, 
hypoechoic, abundant blood flow signal, and architectural 
distortion [18–21]. Category 5 was defined as lesions with 
at least three malignant signs or two malignant signs plus 
two or more auxiliary malignant signs. Category 4C was 
defined as lesions with two malignant signs with or with-
out one auxiliary malignant sign. Category 4B was defined 
as lesions with one malignant sign and two or more auxil-
iary malignant signs. Category 4A was defined as lesions 
with one malignant sign plus one auxiliary malignant sign 
or with two or more auxiliary malignant signs without any 
malignant sign. A hypoechoic lesion without any suspicious 
signs was defined as category 3. Category 3 was used as the 
cut-off point in this study according to the different clinical 
management because tissue diagnosis was recommended 
for category ≥4 by ACR BI-RADS. Therefore, lesions with 
categories 3 were considered benign; lesions with categories 
4A, 4B, 4C, or 5 were considered malignant in the study. If 
both sections of a lesion showed the same character (benign 
or malignant), no section difference was defined. If the two 
planes of a lesion showed different character, section differ-
ence was defined.

Statistical analysis

Receiver operating characteristics (ROC) curves were con-
structed, and the areas under the ROC curves (AUCs) were 
compared to evaluate the diagnostic efficacies of 2D static 
images and dynamic videos [22]. Sensitivity, specificity, 
accuracy, positive predictive value, and negative predictive 
value were calculated separately using category 3 as the 
cut-off point. Chi-square test was used to check whether 
these indicators were different. To evaluate the variations 
of different sections in lesion description (US features) and 
assessment (BI-RADS® categories), Pearson’s chi-square 
test or Fisher’s exact test, where appropriate, was used to 
analyze these categorical data. The contingency coefficient 
was used for correlation analysis of disordered classification 
variable. Chi-square test was used to analyze the difference 
of categorical variables, whereas t test was used to analyze 
the difference of continuous variables. P < 0.05 was con-
sidered statistically significant. All data were analyzed with 
the SPSS version 20.0 (IBM Corp., Armonk, NY, USA) and 
MedCalc version 19.3 (MedCalc, Mariakerke, Belgium).

Results

Patients and lesions characteristics

In total, 449 patients (mean age, 42.8 ± 12.7 years; range, 
14–88 years) with 468 breast lesions were included. Of 449 
patients, 200 (42.7%) were younger than 40 years, whereas 
249 (57.3%) were 40 years or older. There were 315 benign 
lesions and 153 malignant lesions. The lesion sizes ranged 
from 3.7 to 38.0 mm (mean, 13.7 ± 6.2 mm). The patho-
logical results of the lesions are summarized in Table 1.

Section discrepancy of 2D US in 
static images and dynamic videos
The BI-RADS classifications were evaluated by two sonog-
raphers based on the 2D characteristics of the lesions 
depicted in static images and dynamic videos (Table 2). In 
our study, there were some lesions with section discrepancy 
(Figure 2). Sectional differences were detected in 53 (11.3%) 
lesions by static observation and in 50 (10.7%) lesions by 

Table 1  Pathology of the Lesions

Benign   315 (67.3)   Malignant   153 (32.6)
Fibroadenoma   168 (53.3)   Invasive ductal carcinoma   107 (69.9)
Fibrocystic disease   92 (29.2)   Ductal carcinoma in situ   13 (8.4)
Intraductal papilloma   29 (9.2)   Papillary carcinoma   9 (5.8)
Benign phyllodes tumor   7 (2.2)   Invasive lobular carcinoma   6 (3.9)
Inflammation   8 (2.5)   Atypical hyperplasia   9 (5.8)
Sclerotic lesions of the breast   8 (2.5)   Lobular carcinoma in situ   3 (1.9)
Others   3 (0.9)   Others   6 (3.9)

Values are presented as number (percentage).
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dynamic observation. We found no statistically significant 
difference in the proportion of lesions with section discrep-
ancy between dynamic and static observations (P > 0.05), 
but in the results of the two observation methods, the lesions 
with section discrepancy were incompletely matching.

Correlation between the section 
discrepancy and histopathology
Either in static images or by dynamic videos, benign lesions 
were more likely to show section discrepancy than malig-
nant lesions (P < 0.05). As presented in Figure 3, the prob-
abilities of section discrepancy in fibroadenoma, fibrocystic 
breast disease, and intraductal papilloma were significantly 

higher than other pathological types (P < 0.05). In malignant 
lesions, DCIS was more likely to show section discrepancy 
than other pathological types (P < 0.05). Finally, a value of 
0.2 (P < 0.05) was obtained when the contingency coeffi-
cient was calculated for the correlation between section 
discrepancy and histopathology either in dynamic or static 
observation.

Sonographic features differences 
between static images versus 
dynamic videos

The sonographic features of 468 lesions assessed both 
in static images and dynamic videos are summarized in 

Figure 2  A hypoechoic  lesion located at 10’o clock in the left breast of a 25-year-old woman (A) Plane horizonal: the lesion is  irregular 
and microlobulated (as pointed by the arrow), categorized as BIRADS 4C. (B) Plane sagittal: the lesion is oval and smooth, categorized as 
BIRADS 3. The final pathology was fibrocystic disease.

Figure 3  (A) The pathological distribution of  lesions with section discrepancy by static observation.  (B) The pathological distribution of 
lesions with section discrepancy by dynamic observation.

Table 2  Distribution of Breast Imaging and Reporting Data System Classification of All Lesions in Static Images and 
Dynamic Videos

 
 

A
Static images  Dynamic videos

B     3   4A   4B   4C   5   T   3   4A   4B   4C   5   T
  3   89   31   1   0   0   121   186   16   2   2   1   207
  4A   21   136   7   2   1   167   17   61   6   4   2   90
  4B   0   9   56   7   1   73   5   12   26   10   0   53
  4C   0   4   10   53   7   74   7   2   8   53   9   79
  5   0   0   3   8   22   33   0   1   0   14   24   39
  T   110   180   77   70   31   468   215   92   42   83   36   468

A represents the horizontal plane, and B represents the sagittal plane.
Bold font represents the opposite classification nature.

BIOI  2022
O

ri
g

in
al

 A
rt

ic
le



D. Yang et al.: DOI: 10.15212/bioi-2021-0021  65

Tables 3 and 4. Duct changes were more clearly depicted 
in dynamic videos than in static images (P < 0.05) both in 
malignant and benign lesions. Calcification and architectural 
distortion were more sensitively detected by dynamic vid-
eos than by static images (P < 0.05) in malignant lesions 
(Figures 4 and 5). The interpretation of “margin” signifi-
cantly differed in benign lesions between static images and 
dynamic videos (P < 0.05). More benign lesions displayed 
smooth edge in dynamic videos. On the contrary, they were 
more easily characterized as microlobulated or angular in 
static images (Figure 6).

Diagnostic performance of breast 
lesions at 2D US by dynamic videos 
versus static images

The AUC-ROC of dynamic videos were slightly higher than 
those of the static images (Figure S1). The AUC values  
of static image-horizontal, static image-sagittal, dynamic 
video-horizontal, and dynamic video-sagittal were 0.807, 
0.820, 0.837, and 0.846, respectively (Table 5). Only the 
AUC values of static image-horizontal and dynamic vid-
eos-horizontal were significantly different (P = 0.026). 

As for specificity and accuracy, dynamic videos were 
higher than those of static images (P < 0.05). Dynamic 
observation had a similar sensitivity to static observation 
(P > 0.05). The consistency of dynamic and static obser-
vations between two sonographers had been showed in 
Supplementary Table 1.

Effects of breast tissue composition, 
lesion size, and depth on two 
observation methods

Based on breast tissue composition, the background echo-
textures were divided into fat type, fibroglandular type, 
and heterogeneous type. As shown in Figure S2, compared 
with the consistent and inconsistent groups of dynamic 
and static observation results, there was no significant 
difference among the different background echotextures 
(P > 0.05). There was significant difference in lesion sizes 
between the two groups (P < 0.05). Most of the lesions in 
the inconsistent group were around 10 mm in the maxi-
mal diameter. As for lesion depth, there was no significant 
effect on the consistency of the dynamic and static obser-
vations (P > 0.05).

Table 3  Sonographic Features of Benign Lesions (static images versus dynamic videos)

Ultrasonic characteristics  
 

Benign (n = 315)
Static A  Dynamic A  P  Static B  Dynamic B  P

Shape   Oval   246   259   0.426   235   248   0.487
  Circular   18   14     28   24  
  Irregular   51   42     52   43  

Orientation   Parallel   274   285   0.207   268   271   0.734
  Non-parallel   41   30     47   44  

Margin   Smooth   180   261   0.000*   197   261   0.000
  Microlobulated   84   44     75   45  
  Angular   9   5     9   2  
  Spiculated   1   0     1   0  
  Indistinct   44   8     36   8  

Echo pattern   Hypoechoic   293   280   0.340   289   288   0.876
  Isoechoic   2   5     3   3  
  Complexa   6   9     5   8  
  Heterogeneousb   14   21     18   16  

Posterior features   Combined pattern   7   6   0.880   7   8   0.942
  Enhancement   65   61     66   68  
  Shadowing   0   0     1   2  
  Indifferent   243   248     241   237  

Calcifications   Not present   295   287   0.323   297   283   0.061
  Within lesion   20   26     18   30  
  Outside lesion   0   1     0   1  
  Intraductal   0   1     0   1  

Surrounding 
tissue changes

  Architectural distortion   2   2   –   2   2   –
  Duct changes   40   94   0.000   40   92   0.000
  Edema   0   0   –   0   0   –
  Skin thickening   3   3   –   2   3   –
  Skin retraction   0   0   –   0   0   –

A represents the horizontal plane, and B represents the sagittal plane.
aContains both anechoic (cystic or fluid) and echogenic (solid) components.
bA mixture of echogenic patterns within a solid mass.
*P-values in bold face are statistically different; “–” represents not applicable.
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Discussion

Most atypical lesions appeared different ultrasonographic 
features with probe direction variation. The interpretation 
of ultrasonographic features was mainly based on typical 
images collected by sonographers. The selection of rep-
resentative static images affected the final category of the 

lesions. Therefore, we investigated the section discrepancy 
and diagnostic performance of breast lesions in 2D US by 
dynamic videos versus static images.

Our research showed that section discrepancy of breast 
lesions existed in 2D US either by dynamic videos or in 
static images. We suspected that this may be because the sec-
tion discrepancy is related to the limitations of 2D imaging, 

Table 4  Sonographic Features of Malignant Lesions (Static Images versus Dynamic Videos)

Ultrasonic characteristics  
 

Malignant (n = 153)
Static A  Dynamic A  P  Static B  Dynamic B  P

Shape   Oval   50   49   0.683   41   41   0.979
  Circular   15   11     14   13  
  Irregular   88   93     98   99  

Orientation   Parallel   107   111   0.613   102   104   0.807
  Non-parallel   46   42     51   49  

Margin   Smooth   29   41   0.549   18   31   0.076
  Microlobulated   92   98     90   102  
  Angular   13   17     12   18  
  Spiculated   3   3     1   5  
  Indistinct   45   37     54   41  

Echo pattern   Hypoechoic   132   133   0.723   133   132   0.830
  Isoechoic   0   0     0   0  
  Complexa   5   7     5   7  
  Heterogeneousb   16   13     15   14  

Posterior features   Combined pattern   7   13   0.508   11   13   0.740
  Enhancement   38   40     48   43  
  Shadowing   8   6     4   7  
  Indifferent   100   94     90   90  

Calcifications   Not present   134   117   0.011   135   119   0.015
  Within lesion   19   36     18   34  
  Outside lesion   0   0     0   0  
  Intraductal   0   0     0   0  

Surrounding 
tissue changes

  Architectural distortion   9   22   0.014   12   24   0.033
  Duct changes   15   64   0.000*   22   59   0.000
  Edema   0   0   –   0   0   –
  Skin thickening   2   2   –   3   2   –
  Skin retraction   0   0   –   0   0   –

A represents the horizontal plane, and B represents the sagittal plane.
*P-values in bold: represents statistically different; “–” represents not applicable.
aContains both anechoic (cystic or fluid) and echogenic (solid) components.
bA mixture of echogenic patterns within a solid mass.

Figure 4  (A) A hypoechoic lesion at 10’o clock in the right breast of a 44-year-old woman. (B) On static observation, the edges of the lesion 
appear to be either in the blue box or in the red box, making it difficult to define the presence of “calcification” (as shown by arrow) inside or 
outside the lesion.
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the subjectivity of the observer, and the pathological charac-
teristics of the lesion itself. There was no obvious relation-
ship between section discrepancy and the two observation 

methods. Our results confirmed that it was weakly correlated 
with histopathology. In previous study of breast elastogra-
phy, section anisotropy was found to be highly correlated 

Figure 5  The  time point screenshot of  the dynamic video of  the  lesion shown  in Figure 4. With  the scanning of  the probe,  the shape, 
 orientation and edge of the lesion were changing (as shown in the blue box), and calcification was observed both inside and outside the 
lesion (as shown by the arrow).
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with malignant lesions. It was attributed to the growth pat-
tern that oriented along the ducts [13, 14]. On the contrary, 
in our study, benign lesions were more likely to show sec-
tion discrepancy than malignant lesions, whether in static 
images or in dynamic videos. This indicated that benign 
lesions were more likely to have both “benign” and “suspi-
cious malignant” sonograms. In general, the occurrence and 
development of disease were a gradual process. In the pro-
cess of occurrence and progression, the pathological features 
of the lesion were gradually manifested, and different stages 
might coexist. These different components of the lesion had 
different pathological characteristics [23], which contributed 
to the diverse ultrasonographic features of same pathological 
type.

In the study of Földi et al., statistically significant dif-
ferences were observed regarding the interpretation of the 
“margin” of breast lesions between the video sequence and 
the freeze image [11]. However, statistically significant dif-
ferences between dynamic videos and static images for the 
interpretation of the feature “margin” only existed in the 

benign lesion group of our study. In our study, most benign 
lesions were defined as “microlobulated” or “angular” in 
static images. The low contrast between the lesion and its 
surrounding tissue might have obscured the “margin” espe-
cially when the benign lesion did not have an intact or clear 
capsule. The ducts adjacent to the lesions were usually mis-
interpreted as part of the lesions in static images, which leads 
to a characterization of “indistinct margin.” However, with 
dynamic videos, the course of the ducts could be observed 
more clearly and be separated from the lesions. “Margin” is 
an important 2D feature that might affect the final impres-
sion of breast lesions. Focusing only on the static image 
might be the cause for the relatively low specificity of 2D 
US. We found that dynamic observation could obtain more 
complete and accurate information about lesions and sur-
rounding relevant features, which would influence the final 
assessment of the lesions. Therefore, for the computer-aided 
diagnosis (CAD) system, which had been an active research 
field for tumor diagnosis owing to its operator-independent 
in terms of image acquisition and interpretation [24, 25], the 

Figure 6  (A) A static image of the detected lesion displayed the feature “margin” for “angular” (as shown by the arrow). (B), (C), and (D) 
Dynamic video screenshots of the lesions shown in figure (A); the “angular margin” was actually glandular duct (as shown by the arrow).

Table 5  Diagnostic Performance of 2D Ultrasound According to the BI-RADS® Categories

 AUC  95% Confidence interval  Sensitivity (%)  Specificity (%)  Accuracy (%)  PPV  NPV
Static image A   0.807   0.769–0.842   96.7   33.3   54.1   41.0   95.0
Dynamic video A   0.837a   0.801–0.870   88.9   62.8a   71.4a   54.0   92.0
Static image B   0.820   0.782–0.854   96.7   36.8   56.4   43.0   96.0
Dynamic video B   0.846   0.810–0.878   90.2   60.9a   70.5a   53.0   92.0

A represents the horizontal plane, and B represents the sagittal plane.
aThe diagnostic efficacies based on static images and dynamic videos were statistically different.
BI-RADS, Breast Imaging and Reporting Data System; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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prediction models based on the “training” data of static 2D 
US images may be biased. As is known to all, the CAD sys-
tem involves the following four steps: image preprocessing, 
segmentation, feature extraction and selection, and classifi-
cation [26]. Among them, image segmentation is a key step. 
In most situations, the segmentation of breast lesions was 
still performed by manually tracing the lesion contours in 
static images, which is time-consuming and experience-de-
pendent. According to the results of our study, this traditional 
segmentation might be affected by the limitations of static 
US imaging, such as imaging angle, artificial selection, etc. 
[27, 28]. In the process of improving the segmentation accu-
racy, proposing automatic and real-time segmentation meth-
ods would be a main trend in this field [29–31].

In practice, we had found a large number of atypical lesions 
that were initially evaluated as BI-RADS 4 were patholog-
ically benign. Our observation based on dynamic videos 
showed its superiority in differentiating atypical lesions, 
inconsistent with the study of Földi et al. [11]. This could be 
due to the smaller sample size (n = 45) in the study of Földi 
et al., with 30 benign lesions and 15 malignant lesions, lead-
ing to insignificant proportion of atypical lesions. Dynamic 
videos offered better observation of the whole breast lesion, 
not only the lesion itself, but also the relationship with the 
surrounding tissue. Our study results showed that the diag-
nostic performance by dynamic videos surpassed that of 
static images, which encouraged clinicians to develop CAD 
system based on dynamic US, since the source of represent-
ative and high-quality US was the premise of CAD systems 
research [32], which would increase the specificity of 2D US 
to avoid unnecessary waste of medical resources. If artificial 
intelligence could directly process dynamic videos, it could 
save time for manual tracing and avoid bias caused by dif-
ferent observers.

In terms of our study, the CAD system based only on 2D 
US might produce diagnostic bias because of section discrep-
ancy. As we know, the automated breast US system (ABUS) 
has the capability to overcome some of these limitations by 
allowing structured image acquisition, which enables whole-
breast evaluation with multiplanar reformation and temporal 
comparisons [33]. However, research on CAD-assisted diag-
nosis of ABUS is currently based on static images of lesions 
[34–35]. Therefore, even though the ABUS images have 

sufficient structural information, the gray contrast between 
the lesion and its surrounding tissue could still be similar to 
that of static 2D US.

Our study had several limitations. First, it was a retrospec-
tive single-center study, which might elicit selection bias. 
Second, patients who did not undergo surgery or biopsy were 
not included in the study, which, again, might cause selec-
tion bias. Third, the images and dynamic videos were all col-
lected by one experienced sonographer; therefore, whether 
the image-collecting process might affect the interpretation 
of the lesions characteristics could not be evaluated, which 
is important for further CAD analysis.

Conclusion

Breast lesions have section discrepancy in 2D US. 
Observations based on dynamic videos could more accu-
rately reflect lesion features and increase the specificity of 
US in the differentiation of atypical breast lesions.
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